→ Пять аргументов в пользу существования Мультивселенной. Параллельные вселенные и теория множественности миров Множество вселенных

Пять аргументов в пользу существования Мультивселенной. Параллельные вселенные и теория множественности миров Множество вселенных

11 162

Вселенная, в которой мы живем, может быть не единственной. По сути, наша Вселенная может быть только одной из бесконечного числа вселенных, образующих “мультивселенную”.
Некоторые эксперты считают, что существование скрытых вселенных более вероятно, чем нет.

Вот пять наиболее правдоподобных научных теорий, предполагающих, что мы живем в Мультивселенной:

1. Бесконечные Вселенные

Ученые пока не уверены, какую форму имеет пространство-время, но, скорее всего, оно плоское (в отличие от сферической и даже пончиковой формы) и тянется бесконечно. Но если пространство-время бесконечно, то оно должно начать повторяться в какой-то момент, потому что есть конечное количество способов, как частицы могут быть устроены в пространстве и времени.

Так что если бы вы могли посмотреть достаточно далеко, вы бы увидели еще одну версию себя - на самом деле, бесконечное количество версий. Некоторые из этих близнецов будут делать именно то, что вы делаете прямо сейчас, в то время как другие будут носить этим утром другой свитер, а третьи и четвертые будут иметь совершенно разные карьеры и образ жизни.

Поскольку простирается лишь настолько, насколько свет имеет шанс попасть за 13,7 млрд. лет после большого взрыва (13,7 млрд световых лет), пространство-время за пределами этого расстояния можно считать своей собственной, отдельной вселенной. Таким образом, множество вселенных существует рядом друг с другом в гигантской мозаике из вселенных.

Пространство-время может растянуться до бесконечности. Если это так, то все в нашей Вселенной обязано повториться в какой-то момент, создавая лоскутное одеяло из бесконечных вселенных.

2. Дочерние вселенные

Теория квантовой механики, которая правит в крошечном мире субатомных частиц, предлагает еще один способ возникновения множественных вселенных. Квантовая механика описывает мир в терминах вероятности, без конкретных результатов. И математика этой теории предполагает, что все возможные исходы ситуации происходят в их собственных отдельных вселенных. Например, если вы достигнете перекрестка, где вы можете пойти направо или налево, вселенная порождает две дочерние вселенные: одна, в которой вы идете направо, другая – налево.

“И в каждой Вселенной, есть копия вас, как свидетеля того или иного результата. Думать, что ваша реальность является единственной реальностью, – неправильно.”

– Написал Брайан Рэндолф Грин в “Скрытой реальности”.

3. Вселенная Пузырь

Помимо множественных вселенных, созданных бесконечно расширяющемся пространством-временем, другие вселенные могут возникать в связи с так называемой теорией “вечной инфляции”. Понятие инфляции заключается в том, что Вселенная быстро расширяется после Большого взрыва, словно надуваемый воздушный шар. Вечная инфляция, впервые предложенная космологом университета Тафтса Александром Виленкиным, говорит о том, что отдельные участки пространства перестают раздуваться, тогда как в других регионах продолжают раздуваться, тем самым порождая множество изолированных “пузырчатых вселенных”.

Таким образом наша собственная вселенная, где инфляция закончилась, позволив сформироваться звездам и галактикам, является всего лишь маленьким пузырем в обширном море пространства, часть из которого все еще раздувает, и которая содержит много других пузырей, как наша Вселенная. И в некоторых из этих вселенных пузырей, законы физики и фундаментальных констант могли бы отличаться от наших, делая некоторые вселенные действительно странными местами.

4. Математические Вселенные

Ученые спорят о том, является ли математика просто полезным инструментом для , или сама математика является фундаментальной действительностью, и наши наблюдения за Вселенной – просто несовершенное восприятие ее истинного математического характера. Если последний случай имеет место, то, возможно, конкретная математическая структура, которая составляет нашу вселенную, не является единственным выбором, и на самом деле все возможные математические структуры существуют как свои собственные отдельные вселенные.

“Математическая структура – это нечто, что можно описать таким образом, что это полностью зависит от человеческого багажа”, – сказал Макс Тегмарк из Массачусетского технологического института, который предложил эту, на первый взгляд, безумную идею.

“Я действительно верю, что эта существующая Вселенная может существовать независимо от меня, и будет продолжать существовать, даже если бы не было никаких людей.”

5. Параллельные Вселенные

Еще одна идея, которая возникает из теории струн, является понятие “braneworlds” (мир бран) - параллельные вселенные, которые парят вне досягаемости наших собственных, предложенная Паулем Штайнхардтом Принстонского университета и Нилом Туроком из Института Периметра Теоретической Физики в Онтарио, Канада. Идея исходит из возможности существования многих других измерений в нашем мире, чем трехмерное пространство и одно время, которое мы знаем. В дополнение к нашему трехмерному брану пространства, другие трехмерные браны могут плавать в пространстве большей размерности.

  • Перевод

Что вы думаете по поводу мультивселенной? Вопрос не был совсем уж неожиданным для нашей импровизированной лекции за обеденным столом, но он застал меня врасплох. Не то, чтобы меня никогда раньше не спрашивали о мультивселенной, но объяснять теоретическую конструкцию – это одно, а объяснять свои чувства к ней – совсем другое. Я могу озвучить все стандартные аргументы и главные вопросы по мультивселенной, я могу ориентироваться в фактах и технических подробностях, но в результатах я теряюсь.

Физики не привыкли говорить о том, как они относятся к чему-то. Мы за твёрдое знание, количественные оценки и эксперименты. Но даже лучшие из беспристрастных анализов начинаются только после того, как мы решаем, в какую сторону нам идти. В зарождающейся области обычно возникает выбор из возможностей, у каждой из которых есть свои достоинства, и часто мы выбираем одну из них инстинктивно. Этот выбор определяется эмоциональными рассуждениями, стоящими над логикой. То, с какой позицией вы ассоциируете себя, это, как говорит физик из Стэнфордского университета Леонард Сасскинд, «больше, чем просто научные факты и философские принципы. Это вопрос хорошего вкуса в науке. И, как и все споры о вкусах, в нём участвуют эстетические чувства».


Сам я занимаюсь теорией струн, и одной из её особенностей является возможность существования множества логически непротиворечивых вариантов вселенных, отличных от нашей. Процесс, создавший нашу Вселенную, может создать и те, другие, что приводит к бесконечному количеству вселенных, где происходит всё, что может произойти. Последовательность рассуждений начинается со знакомого мне места, и я могу следовать завитушкам, которые проделывают уравнения в своём танце на странице, приводящем к этому заключению, но, хотя я представляю себе мультивселенную, как математическую конструкцию, я не могу поверить, что она вдруг выскочит из области теорий и проявит себя в реальности. Как я могу притворяться, что у меня нет проблем с бесконечным количеством копий меня самого, расхаживающих по параллельным мирам, и принимающих решения, как схожие, так и отличающиеся от моих?

Я не один такой двойственный. Дебаты по поводу мультивселенной были горячими, и она остаётся источником противоречий среди самых выдающихся учёных нашего времени. Дебаты по мультивселенной – это не просто обсуждение частностей теории. Это борьба по теме идентичности и результатов, по поводу того, на чём основывается объяснение, из чего состоит доказательство, как мы определяем науку, и есть ли во всём этом смысл.

Когда бы я ни рассказывал о мультивселенной, на один из неизбежно возникающих вопросов у меня есть ответ. Живём ли мы во вселенной или мультивселенной, эти классификации относятся к масштабам, размер которых выходит за рамки воображения. Вне зависимости от результата, жизнь вокруг нас не изменится. Так какая разница?

Разница есть, поскольку то, где мы находимся, влияет на то, кто мы есть. Разные места приводят к разным реакциям, из которых возникают различные возможности. Один объект может выглядеть по-разному на разном фоне. Мы определяемся тем пространством, которое мы населяем, гораздо большим количеством способов, чем мы осознаём. Вселенная – это предел расширения. Она содержит все места действия, все контексты, в которых мы можем представить бытие. Она представляет общую сумму возможностей, полный набор всего, чем мы можем быть.

Измерение имеет смысл только в системе отсчёта. Числа очевидно абстрактны, пока им не назначены единицы измерения, но даже такие размытые определения, как «слишком далеко», «слишком маленький», «слишком странный» подразумевают некую систему координат. Слишком далеко подразумевает точку отсчёта. Слишком маленький относится к шкале. Слишком странный подразумевает контекст. В отличие от всегда объявляемых единиц измерения, система отсчёта предположений определяется редко, но всё-таки значения, присваиваемые вещам – объектам, явлениям, опыту – откалиброваны по этим невидимым осям.

Если мы обнаружим, что всё что мы знаем и можем узнать, находится всего лишь в одном из карманов мультивселенной, сдвинется весь фундамент, на котором мы расположили нашу координатную сетку. Наблюдения не изменятся, но изменятся выводы. Наличие других пузырьковых вселенных возможно и не окажет влияния на те измерения, что мы проводим, но может повлиять на то, как мы их интерпретируем.

Первое, что поражает в мультивселенной – её необъятность. Она больше, чем что-либо, с чем имело дело человечество – такое возвеличивание подразумевается в самом названии. Можно было бы понять, если бы эмоциональная реакция на мультивселенную происходила бы от чувства собственного преуменьшения. Но размер мультивселенной, наверное, наименее противоречивое из её свойств.

Жиан Жудис , глава теоретиков ЦЕРН, говорит от имени физиков, когда утверждает, что один взгляд в небо прочищает нам мозги. Мы уже представляем себе наши масштабы. Если мультивселенная существует, то, как он говорит, «проблема противопоставления меня и необъятности вселенной не изменится». Многих даже успокаивает такая космическая перспектива. По сравнению со вселенной все наши проблемы и жизненные драмы уменьшаются так сильно, что «всё, что здесь происходит, не имеет никакого значения», говорит физик и автор Лоуренс Краусс . «Меня это очень утешает».

От потрясающих фотографий, сделанных телескопом им. Хаббла, до поэм Октавио Паса об «обширной ночи» и «галактической песни» Монти Пайтонов, существует романтизм, связанный с нашим лилипутским масштабом. В какой-то момент нашей истории мы смирились с нашей бесконечной малостью.

Не из-за нашей ли боязни масштабов мы так неохотно принимаем понятие мультивселенной, включающее миры, находящиеся вне нашего поля зрения, и обречённые там находиться? Это, конечно, очень частая жалоба, которую я слышу от моих коллег. Южноафриканский физик Джордж Эллис, сильно возражающей против мультивселенной, и британский космолог Бернард Карр, настолько же сильно за неё агитирующий, обсуждали эти вопросы в нескольких очаровательных разговорах. Карр считает, что их точка расхождения относится к тому, «какие свойства науки необходимо считать неприкосновенными». Обычным показателем служат эксперименты. Сравнительные наблюдения – допустимая замена. Астрономы не в состоянии управлять галактиками, но обозревают их миллионами, в разных формах и состояниях. Ни один из методов не подходит мультивселенной. Лежит ли она, в таком случае, за пределами научной области?

Сасскинд, один из отцов теории струн, обнадёживает нас. В эмпирической науке существует третий подход: делать выводы о невидимых объектах и явлениях из того, что мы в состоянии увидеть. Для примера достаточно будет взять субатомные частицы. Кварки навечно связаны в протоны, нейтроны и другие составные частицы. «Они, так сказать, скрыты за завесой,- говорит Сасскинд,- но сейчас, хотя ни единого изолированного кварка мы не видели, никто всерьёз не будет подвергать сомнению правильность теории кварков. Это часть фундамента современной физики».

Поскольку Вселенная расширяется с ускорением, галактики, находящиеся сейчас на горизонте поля зрения, вскоре исчезнут за ним. Мы не считаем, что они уйдут в небытие, так же, как мы не считаем, что корабль будет дезинтегрирован, скрывшись за горизонтом. Если известные нам галактики могут существовать в отдалённых районах за пределами поля зрения, кто скажет, что там не может быть и чего-то другого? Вещей, которые мы никогда не видели, и никогда не увидим? Как только мы признаем возможность существования регионов, находящихся вне нашего кругозора, последствия вырастают экспоненциально. Британский королевский астроном Мартин Рис сравнивает эту линию рассуждений с терапией, направленной на выработку отвращения. Когда вы признаёте наличие галактик вне нашего текущего горизонта, вы «начинаете с маленького паука, находящегося очень далеко», но, вы не успеете оглянуться, как дадите волю возможности существования мультивселенной, населённой бесконечными мирами, возможно, сильно отличающимися от вашего – то бишь, «найдёте тарантула, ползающего по вам».

Отсутствие возможности напрямую управлять объектами никогда не было моим персональным критерием определения пригодности физической теории. Если что-то и волнует меня по поводу мультивселенной, уверен, к этому оно отношения не имеет.

Мультивселенная бросает вызов ещё одному дорогому нам представлению – уникальности. Может ли это быть причиной проблем? Как поясняет космолог Александр Виленкин, неважно, насколько велик наблюдаемый регион, пока он конечен, он может находиться в конечном числе квантовых состояний. И описание этих состояний однозначно определяет содержимое региона. Если этих регионов бесконечно много, то то же самое состояние обязательно будет воспроизведено где-то ещё. Даже наши слова будут точно воспроизведены. Поскольку процесс продолжается в бесконечность, наших копий тоже будет бесконечное количество.

«Наличие этих копий вгоняет меня в депрессию,- говорит Виленкин. – У нашей цивилизации есть много отрицательных черт, но мы хотя бы могли заявлять об её уникальности – как о произведении искусства. А теперь мы и этого не можем сказать». Я понимаю, что он имеет в виду. Это волнует и меня, но не уверен, что именно эта мысль лежит в основе моей неудовлетворённости. Как говорит с тоской Виленкин, «Я недостаточно самонадеян, чтобы говорить реальности, какой она должна быть».

Главная загадка дебатов заключается в странной иронии. Хотя мультивселенная увеличивает нашу концепцию физической реальности до почти невообразимого размера, она вызывает чувство клаустрофобии, поскольку проводит границу нашего знания и наших возможностей получения знаний. Теоретики мечтают о мире без своевольности, описываемом самодостаточными уравнениями. Наша цель – найти логически полную теорию, сильно ограниченную самодостаточностью, и принимающую только одну форму. Тогда для нас, даже не знающих, откуда или почему взялась эта теория, её структура не будет выглядеть случайной. Все фундаментальные константы природы появятся «из математики, числа π и двоек», как говорит физик из Беркли Рафаэль Буссо .

В этом притягательность Общей теории относительности Эйнштейна – причина, по которой физики всего мира восклицают из-за её необычной бессмертной красоты. Соображения симметрии диктуют уравнения так чётко, что теория кажется неизбежной. Именно это мы хотели повторить в других областях физики. И пока у нас ничего не получилось.

Десятилетиями учёные ищут физические причины того, почему фундаментальные константы обязаны принимать именно такие значения, какие у них имеются, но пока ещё ни одной причины обнаружено не было. И вообще, если мы используем имеющиеся теории, чтобы вычислять возможные значения некоторых из известных параметров, результаты оказываются до смешного далеки от измеренных величин. Но как же объяснить эти параметры? Если существует всего одна-единственная вселенная, то управляющие ей параметры должны быть облечены особым значением. Либо процесс, управляющий выбором параметров, случаен, либо в нём есть некая логика, или даже продуманная цель.

Ни один из вариантов не выглядит привлекательно. Мы, учёные, проводим жизнь в поисках законов, поскольку считаем, что всё происходит по какой-то причине, даже если она нам неизвестна. Мы ищем закономерности, потому что верим в некий порядок во вселенной, даже если не видим его. Чистая случайность не вписывается в это мировоззрение.

Но говорить о разумном плане тоже не хочется, ведь это подразумевает существование некоей силы, предшествовавшей законам природы. Эта сила должна выбирать и судить, что, в отсутствие такой чёткой, сбалансированной и жёстко ограниченной структуры, как, например, ОТО, подразумевает произвол. В идее о возможности существования нескольких логически непротиворечивых вселенных, из которых была выбрана только одна, есть что-то откровенно неудовлетворительное. Если бы это было так, то, как говорит космолог Деннис Сциама , придётся думать, что «существует некто, изучающий такой список, и приговаривающий, "Нет, такой вселенной у нас не будет, и такой не будет. Будет только вот такая"».

Лично меня такой вариант, со всеми его подтекстами по поводу того, что могло бы быть, огорчает. На ум приходят различные сцены: брошенные дети в приюте из какого-то забытого фильма, когда одного из них усыновляют; лица людей, лихорадочно стремившихся к мечте, но не достигших её; выкидыши в первом триместре. Такие вещи, которые почти уже родились, но не смогли, мучают меня. Если не существует теоретического ограничения, исключающего все возможности, кроме одной, такой выбор кажется жестоким и несправедливым.

В таком тщательно настроенном творении как объяснить ненужные страдания? Поскольку эти философские, этические и моральные проблемы не относятся к области физики, большинство учёных избегает их обсуждений. Но нобелевский лауреат Стивен Вайнберг высказался от их имени: «Есть ли в нашей жизни следы великодушного творца – на этот вопрос каждый ответит для себя. Моя жизнь была удивительно счастливой. Но всё равно, я видел, как моя мать мучительно умирала от рака, как болезнь Альцгеймера разрушала личность отца, и как множество двоюродных и троюродных родственников было убито при Холокосте. Признаки присутствия великодушного творца очень хорошо спрятаны».

Перед лицом боли принять случайность гораздо легче, чем чёрствое игнорирование или намеренное злодеяние, присутствующее в дотошно продуманной вселенной.

Мультивселенная обещала отвлечь нас от этих ужасных мыслей, дать нам третий вариант, побеждающий дилемму объяснения.

Конечно, мультивселенную физики придумали не для этого. Она появилась из других соображений. Теория космической инфляции должна была объяснить широкомасштабную гладкость и отсутствие кривизны Вселенной. «Мы искали простое объяснение тому, почему Вселенная похожа на большой шар,- говорит физик из Стэнфорда Андрей Линде. – Мы не знали, что что-то пойдёт к этой идее в нагрузку». Нагрузкой стало понимание того, что наш Большой взрыв был не уникальным, и что, вообще-то, должно существовать бесконечное количество таких взрывов, каждый из которых создаёт не связанное с нашим пространство-время.

Затем появилась теория струн. На сегодня это лучший кандидат на объединённую теорию всего. Она не только достигает невозможного – примирения гравитации и квантовой механики – но просто-таки настаивает на этом. Но для схемы, уменьшающей невероятное разнообразие вселенной до минимального набора строительных кирпичиков, теория струн страдает от унизительной проблемы: мы не знаем, как определить точные значения фундаментальных констант. По текущим прикидкам, существует потенциальных возможностей – неизмеримо огромное число, для которого у нас даже нет названия. Теория струн перечисляет все формы, которые способны принять законы физики, и инфляция даёт возможность для их реализации. С рождением каждой новой вселенной тасуется воображаемая колода карт. Розданная рука определяет законы, управляющие вселенной.

Мультивселенная объясняет, каким образом константы из уравнений приобрели присущие им значения, не привлекая случайность или разумный выбор. Если есть множество вселенных, в которых реализованы все возможные законы физики, мы получаем именно такие значения при измерениях, потому что наша вселенная находится именно на этом месте ландшафта. Никакого более глубокого объяснения нет. Всё. Это и есть ответ.

Но, освобождая нас от старой дихотомии, мультивселенная оставляет нас в тревожном состоянии. У вопроса, над которым мы бились так долго, может не быть более глубокого ответа, чем «так всё устроено». Возможно, это лучшее, что мы можем сделать, но мы к таким ответам не привыкли. Он не срывает покровы и не объясняет, как всё работает. Более того, он разбивает мечту теоретиков, утверждая, что уникального решения найти нельзя, поскольку его не существует.

Некоторым людям не по душе такой ответ, другие считают, что это и ответом-то назвать нельзя, а иные просто принимают его.

Нобелевскому лауреату Дэвиду Гроссу кажется, что мультивселенная «попахивает ангелами». Он говорит, что принятие мультивселенной сродни тому, что вы сдаётесь, принимая, что вы никогда ничего не поймёте, потому что всё наблюдаемое можно свести к «исторической случайности». Его коллега по нобелевке, Герард ’т Хоофт, жалуется, что не может принять сценарий, по которому нужно «перебирать все решения, пока не найдёте соответствующее нашему миру». Он говорит: «физики не работали так в прошлом, и ещё можно надеяться, что в будущем у нас появятся доказательства получше».

Космолог из Принстона, Пол Стейнхардт называет мультивселенную «теорией чего угодно», потому что она всё допускает и ничего не объясняет. «Научная теория обязана быть избирательной,- говорит он. – Её сила в исключаемом количестве возможностей. Если она включает все возможности, то не исключает ничего, и сила её нулевая». Стейнхардт был одним из ранних сторонников инфляции, пока не понял, что она приводит к мультивселенной, и порождает пространство возможностей, вместо того, чтобы делать конкретные предсказания. С тех пор он стал одним из самых громких критиков инфляции. В недавнем эпизоде Star Talk он представился, как поборник альтернатив мультивселенной. «Чем вам так насолила мультивселенная? - пошутил ведущий. – Она уничтожила одну из моих любимых идей», ответил Стейнхардт.

Физики должны были заниматься истиной, абсолютными понятиями, предсказаниями. Либо вещи такие, либо не такие. Теории не должны быть гибкими или инклюзивными, они должны быть ограничивающими, строгими, исключающими варианты. Для любой ситуации хочется иметь возможность предсказать вероятный – а в идеале, единственный и неизбежный – результат. Мультивселенная ничего такого нам не даёт.

Дебаты по поводу мультивселенной часто выливаются в шумные споры, где скептики обвиняют поборников идеи в предательстве науки. Но важно осознать, что такое положение вещей никто не выбирал. Всем хочется вселенную, органически возникающую из прекрасных глубоких принципов. Но из того, что нам известно, в нашей вселенной такого нет. Она такая, какая есть.

Нужно ли спорить против идеи мультивселенной? Должна ли она остаться на вторых ролях? Многие мои коллеги пытаются представить её в более выгодном свете. Логически рассуждая, с бесконечным количеством вселенных работать проще, чем с одной – меньше вещей приходится объяснять. Как говорил Сциама, мультивселенная «в каком-то смысле удовлетворяет бритве Оккама, поскольку вам хочется минимизировать количество случайных ограничений, налагаемых на вселенную». Вайнберг говорит, что теория, свободная от произвольных предположений, и не подвергавшаяся «тщательной подстройке для соответствия наблюдениям», красива сама по себе. Может оказаться, что эта красота сходна с красотой термодинамики, со статистической красотой, объясняющей состояние макроскопической системы, но не каждой из её отдельных компонент. «В поисках красоты нельзя быть заранее уверенным в том, где вы её обнаружите, или какую именно красоту найдёте», говорит Вайзенберг.

Много раз, когда я размышлял над этими сложными интеллектуальными проблемами, мысли мои возвращались к простой и прекрасной мудрости Маленького принца из произведения Антуана де Сент-Экзюпери, который, считая свою любимую розу единственной для всех миров, оказался в розовом саду. Сбитый с толку таким предательством и огорченный утратой важности – его розы и себя самого – он плачет. В итоге он понимает, что его роза «важнее сотен остальных», потому что она его.

В нашей Вселенной может не быть ничего особенного, кроме того, что она наша. Разве этого не достаточно? Даже если все наши жизни и всё, что мы можем познать, окажутся незначительными в масштабах космоса, они всё же наши. Есть что-то особенное в здесь и сейчас, в том, что нечто – моё.

Несколько раз за последние месяцы я воспроизводил в уме мой разговор с Жианом Жудисом. Я находил уверенность в том, как спокойно он относился к огромному количеству возможных вселенных и вроде бы случайных выборах, сделанных нашей. Возможно, мультивселенная просто сообщает нам, что мы работаем не над теми вопросами, говорит он. Возможно, как Кеплер с орбитами планет, мы пытаемся найти в числах более глубокий смысл, чем там есть.

Поскольку Кеплер знал лишь о существовании Солнечной системы, он считал, что в форме орбит планет и в расстояниях между ними скрыта какая-то важная информация, но оказалось, что это не так. Эти значения не были фундаментальными, они были просто данными об окружении. В то время это могло показаться прискорбным, но с точки зрения ОТО мы уже не испытываем чувства потери. У нас есть прекрасное объяснение гравитации. Просто в этом объяснении значения, связанные с орбитами планет, не являются фундаментальными константами.

Возможно, говорит Жудис, мультивселенная подразумевает нечто похожее. Может, нам надо отказаться от того, за что мы хватаемся. Может, нужно мыслить шире, перегруппироваться, поменять вопросы, задаваемые нами природе. По его словам, мультивселенная может открыть «чрезвычайно удовлетворительные, приятные и расширяющие взгляд возможности».

Из всех аргументов в пользу мультивселенной этот нравится мне больше всего. В любом сценарии в любой физической системе можно задать бесконечно много вопросов. Мы пытаемся распутать проблему до её основ и спрашивать самые базовые вопросы, но наша интуиция построена на том, что было раньше, и возможно, что мы основываемся на парадигмах, уже не имеющих отношения к новым областям, которые мы пытаемся изучить.

Мультивселенная больше похожа на ключ, чем на закрытую дверь. С моей точки зрения, мир окрасился надеждой и наполнился возможностями. Он не более расточителен, чем беседка, полная роз.

В космологии уже давно рассматривается гипотеза о том, что наша Вселенная - не единственная в своём роде. Она может быть одной из многочисленных Вселенных, составляющих так называемую Мультивселенную . Хотя эту гипотезу можно посчитать чем-то из области фантастики, есть достаточно прочная база, свидетельствующая о её правомерности. Предлагаем пять аргументов, свидетельствующих о том, что мы живём в Мультивселенной.

1) Одна из космологических моделей предполагает так называемую «вечную инфляцию ». Инфляция - это очень быстрое расширение Вселенной после Большого взрыва. Гипотеза «вечной инфляции» впервые была предложена специалистом по космологии из Тафтского университета Александром Виленкиным . Учёные предполагает, что инфляционное расширение Вселенной прекратилось только в отдельных частях космоса (эти области получили название термализованных регионов ), но в некоторых частях продолжается расширение, рождаются своеобразные «инфляционные пузыри», каждый из которых перерастает в настоящую Вселенную:

Инфляционная теория допускает образование множественных дочерних вселенных, которые непрерывно отпочковываются от существующих

2) В рамках так называемой теории бран (термин «брана» происходит от слова «мембрана») или М-теории , четыре пространственных измерения разграничены трёхмерными стенами или три-бранами. Одна из этих стен и является пространством Вселенной, в котором мы живём, в то время как существуют и другие браны-вселенные, которые скрыты от нашего восприятия. Они располагаются параллельно нашей бране и, при определённых обстоятельствах, они притягиваются друг к другу посредством гравитации. Согласно теории, при столкновении бран высвобождается большое количество энергии и тем самым возникают условия для Большого взрыва:

(картинка с сайта wikimedia.org)

3) Многомировая интерпретация квантовой механики Хью Эверетта . Согласно представлениям квантовой механики, всё в мире частиц описывается только вероятностно. Эверетт предположил, что все исходы вероятного события всегда реализуются, но происходит это в разных Вселенных. При каждом акте наблюдения, измерения квантового объекта, наблюдатель как бы расщепляется на несколько (предположительно, бесконечно много) версий, соответствующих различным Вселенным. Это можно наглядно пояснить так: если вы находитесь на перекрёстке, и у Вас есть выбор - пойти налево или направо, существующая Вселенная «порождает» ещё две дочерние Вселенные: одна, в которой вы идёте направо, а другая - налево:

4) Как показывают исследования, пространство нашей Вселенной с большой степенью точности плоское. А если пространство и время простираются бесконечно, то в некоторой точке должно наблюдаться повторение, поскольку есть какой-то предел числу комбинаций организации частиц в пространстве и времени. Другими словами, бесконечность пространства и времени, предполагает, что где-нибудь существует точная копия нашей Вселенной:

Пространство и время простираются бесконечно, следовательно, в некой точке должно быть повторение Вселенной

5) Вселенные с другой математикой . Согласно мнению некоторых учёных, основополагающими законами Вселенной являются математические законы. На основе этого можно предположить, что есть другие Вселенные, в которых есть свои математические структуры.

Мультивселенная - это парадокс! Мне кажется, существование Мультивселенных следует рассматривать не так, как представлено в статье, как возможности для новых открытий, а эту идею стоит принять, как парадоксы современных теорий, указывающих на неполноту наших знаний. И вот почему.
Мультивселенная противоречит принципу Оккама. На мой взгляд, идея Мультивселенной обладает следующим недостатком, существование параллельных никак физически не проявляется в нашей Вселенной, кроме начальных этапов своей эволюции, например как в теории бран, иначе бы это приводило к нарушениям закона сохранения. А значит мы лишены способов верифицировать эту гипотезу экспериментальным путём и остаётся только путь интерпретации наблюдательных фактов с помощью математических моделей или ещё радикальнее возвести математические модели в абсолют, как это предлагает Макс Тегмарк. Исключая последнее за явной спорностью, мне кажется, Мультивселенные при интерпретации наблюдений это такая дополнительная сущность, которую согласно принципу Оккама следует отбросить.
Мы недостаточно понимаем устройство нашей Вселенной. Но текущая ситуация в космологии, по моим собственным ощущениям, как аспиранта института космологии, куда ещё хуже! Практически никто из космологов не связывает построение своих теорий с анализом наблюдений. Математические модели часто строятся в безразмерных величинах, так что часто физический смысл бывает скрыт даже для самого теоретика. На первое место выходит математический анализ, а интерпретации идёт в последнюю очередь. Более того, многих космологов удовлетворяет интерпретация результата в терминах математически выстроенной ими физики, например вполне нормально построение лагранжиана в 11-мерном пространстве, а реальное трёхмерное пространство лишь частный случай, который получается после компактификации. Но этот важный и на деле очень трудный переход мало кто совершает. Космология как наука очень молода и далека от совершенства своих методов, и инфляционная Мультивселенная свидетельствует о том, что пока мы до конца не понимаем механизм инфляции. Точно также, интерпретация Эверетта скорее всего связана с нашим непониманием физической сути квантовой механики.
"Прекрасно, что мы встретились с парадоксом. Теперь можно надеяться на продвижение вперёд!" , цитируя Нильса Бора из От какого же непонимания возникают гипотезы о Мультивселенных? Тут явно должен был бы прозвучать вопрос "А почему наша Вселенная единственная и такая какая она есть? ", то есть пока не ясны причины тонкой настройки Вселенной. В статье Розенталя в УФН за 1980 г. о физических закономерностях и численных значениях фундаментальных постоянных хорошо аргументируется, как их изменение повлияет на нашу Вселенную, и что эти значения возможно уникальные для осуществления нашей жизни. Одной из попыток объяснить эти значения является перебор возможных сочетаний вместе с антропным принципом. Но такое объяснение, на мой взгляд, не является удовлетворительным, т.к. такой перебор ничем не ограничен и вряд ли осуществим.
Единая теория единой Вселенной. Более разумным мне кажется путь к созданию единой теории в одной Вселенной, которая бы объясняла выбор таких значений. Думаю, что этот путь лежит в через поиск таких общематематических свойств, которые могут иметь физические следствия. Пока их нельзя ясно назвать, но в качестве примера приведу константу пи, которая имеет ясный математический смысл, но при этом входит в физические формулы. Имела бы смысл Вселенная, в которой число пи было бы другим? Тут можно возразить, что отношение длины окружности к её радиусу меняется в искривленных пространствах, однако в бесконечно малом пределе оно всегда стремится к пи и если бы это было не так, то пространство, наверное, потеряло бы свойства непрерывности, а физические законы стали бы непредсказуемыми.

leon пишет:

В качестве примера приведу константу пи, которая имеет ясный математический смысл, но при этом входит в физические формулы. Имела бы смысл Вселенная, в которой число пи было бы другим? Тут можно возразить, что отношение длины окружности к её радиусу меняется в искривленных пространствах, однако в бесконечно малом пределе оно всегда стремится к пи и если бы это было не так, то пространство, наверное, потеряло бы свойства непрерывности, а физические законы стали бы непредсказуемыми.

Меня тоже давно интересует - По-моему - это глубочайшая проблема , имеющая прямое отношение к фундаментальным первоосновам нашего Мира. Причём, про «пи» ещё можно сказать, что это - константа, полученная из эксперимента (через всё более точное измерение длины окружности единичного диаметра). Но «е» - это ведь число, умозрительно полученное из дифференциального исчисления. Т.е., умозрительное рассмотрение идей непрерывности, суммирования, предельных переходов приводит ко вполне конкретному числу . И не важно - кто будет рассуждать: европеец, африканец или китаец или даже, возможно, ... инопланетянин, он придёт к одному и тому же. Для меня это - на грани чуда. И подтверждение того, что даже самые абстрактные умозрительные конструкции имеют отношение к Миру, поскольку мы (и наш мозг) - это часть Мира. А поэтому, глядя внутрь себя, мы можем прийти к познанию первоснов внешнего (физического) Мира. Правда, нужно понимать - какие умозрительные конструкции какой имеют смысл? Для этого нужна мощная (физическая) интуиция.

Конечно, число Эйлера также замечательная математическая константа, входящая во многие физические формулы.

Однако смысл числа "пи" для меня гораздо нагляднее (и исторически оно возникло раньше). Разовью свою мысль, пусть как в анекдоте: "в военное время - значение "пи" достигает 4", тогда ему будет соотвествовать геометрия шахматной доски, когда самые малые дискретные элементы плоскости соответсвуют клеткам-квадратам и если задать на ней метрику манхэттенским расстоянием , то единичная окружность описанная вокруг клетки будет соотвествовать её 8 соседним клеткам, то есть длина окружности будет равна 8, отсюда пи равно 4. В пространстве такой метрики физику можно симулировать с помощью клеточных автоматов, что было описано в книге Стивена Вольфрама "New kind of science". Однако, у клеточных автоматов есть недостаток, так как их эволюция задается ближайшими соседями, то они описывают только локальные явления (такие как распространение волн) и принципиально с их помощью нельзя описать нелокальные явления, вроде квантовой запутанности.

Это лишь частный случай, но он иллюстрирует, что число "пи" определяет непрерывность геометрии (пространства) нашего мира, на основании которой построена современная физика, а значит пи определяет саму физику. Другим значениям "пи" скорее всего соответствуют дискретные пространства, на которых пока неясно возможно ли адекватно описать все физические явления. Если невозможно, то все такие пространства в определенном смысле ущербны и единственно физически возможным является непрерывное.

Илдус, привет. С Новым Годом!

Пиши внимательнее.

Геометрия шахматной доски, когда самые малые дискретные элементы плоскости соответсвуют клеткам-квадратам и если задать на ней метрику манхэттенским расстоянием , то единичная окружность описанная вокруг клетки будет соотвествовать её 8 соседним клеткам, то есть длина окружности будет равна 8, отсюда пи равно 4.

2) Надо определиться с терминами.

Если считать окружность геометрическим местом точек, равноудалённых от данной, то единичная окружность, описанная вокруг клетки будет соответствовать не 8, а только 4 соседним клеткам (восток-север-запад-юг). Остальные четыре отстоят от центра на расстояние 2. Диаметр D=2, длина окружности L=4. Поэтому число пи=L/D=4/2=2.

Если же определить окружность твоим способом, через 8 соседних клеток, то диаметр D=4, длина окружности L=8, пи=L/D=8/4=2.

Здраствуйте, Вадим Владимирович! И Вас с наступившим! Спасибо, что разобрались в моих рассуждениях и отыскали ошибку. Извините, ссылка действительно получилась бестолковой, к тому же я перепутал манхеттенское расстояние и расстояние Чебышева, которым оперировал.

Манхеттенское расстояние на шахматной доске между клетками можно описать как минимальное число ходов необходимое ладье, а расстояние Чебышева минимальное число ходов королем. В последнем случае пи равно 4 (8 соседних клеток образуют равноудаленный квадрат(т.е. единичную окружность), который мы можем непрерывно обойти королем, а диаметр единичной окружности всегда равен 2) . А вот в первом это уже не так очевидно, 4 соседних клетки нельзя непрерывно обойти с помощью ладьи, тут будут необходимы ходы в центр и обратно и таким образом длина единичной окружности равна 8, а пи 4. Более математически строго расстояния в таких случаях измеряются по Лебегу, тогда манхеттенское расстояние это метрика на L_1, а Чебышева на L_бесконечность.

Для физики же важно пространство с метрикой на L_2. В мире на шахматной доске, где все объекты перемещаются на целочисленные расстояния и физически как-то должны между собой синхронизироваться, теоретически должно быть возможно задать их способ перемещения в согласии с метрикой, что-то вроде ходов конём (по крайней мере теорема Ферма для случая 2 это позволяет, а вот для случая 3 и выше нет). Но чему равно пи в этом случае мне пока трудно сказать.

Ради математической разминки интересно рассмотреть чему равно пи в зависимости от замощения плоскости, наверняка этот вопрос уже кто-то исследовал. Но ради юмора, например, можно утверждать, что с расстоянием Чебышева на гексогональной доске пи равно 3, а на треугольной 1.5. Однако, я склонен считать, что на дискретном пространстве адекватной физической реальности не описать и не получить в "демиурговском" смысле, поэтому это всего лишь математические каламбуры.

почему числа типа «пи» или «е» именно такие и никакие другие? ... Для меня это - на грани чуда.

Всегда было именно такое ощущение. А ведь есть ещё мнимые числа, "перпендикулярные" «пи» и «е» . Даже отрицательные числа совершили переворот в математике.

все вместе : $$-e^{i\pi}=1$$

Полина пишет:

А ведь есть ещё мнимые числа, "перпендикулярные" «пи» и «е» .

Да, вот в чём физический смысл того, что волновая функция микрочастиц - мнимая, а вероятность обнаружения частицы пропорциональна квадрату её модуля?

Полина пишет:

Для меня самым поразительным является то, что все вместе умозрительные числа превращаются в обычное число - единицу: $$-e^{i\pi}=1$$

Действительно, замечательная формула!

Соглашусь, про первые 3 гипотезы. Но вот с 4 никак нельзя соглашаться, по крайней мере из того факта, что все наблюдательные факты говорят о том, что Вселенная не бесконечна. Насчёт 5...

Если наши сегодняшние знания, опирающиеся на нашу математику позволяют, грубо говоря, описать наличие других вселенных, то почему в них должна быть другая математика?

Folko пишет:

Насчёт 5... Если наши сегодняшние знания, опирающиеся на нашу математику позволяют, грубо говоря, описать наличие других вселенных, то почему в них должна быть другая математика?

Сережа! Здравствуй! Прокомментируй - какие факты говорят о конечности Вселенной и в какой форме? В общем, из философских соображений можно утверждать, что Вселенная (с большой буквы) конечна. Но в какой форме эта конечность реализуется - это еще надо понять.

Аргументов против высказываемых в данной статье гипотез у меня нет... за исключением того, что предлагаемые суждения не являются аргументами, а являются гипотезами, т.е предположениями, которые не имеют пока какой-либо надежной экспериментальной проверки. А последнее очень существенно.

Все пять обозначенных гипотез относятся к разным разделам физики и, по большому счету, противоречат или могут противоречить друг другу.

Так, например, пятая гипотеза по сути противоречит формулировке всех остальных. Если математика другая, то о чем собственно можно говорить в рамках привычной нам математики...

Первые две гипотезы - это из арсенала современной космологии, причем они являются одними из возможных вариантов множества аналогичных гипотез.

Третья гипотеза Эверетта призвана была рационализировать или "объяснить" смысл квантовых законов, но таких способов интерпретировать квантовую теорию много. А с другой строны, идеи Эверетта никак не связаны с ОТО, на чем построены две первые гипотезы.

Четвертая гипотеза совсем невнятная. И, наконец, существуют более продвинутые гипотезы, которые как раз могут рассчитывать на аргументированность в отличие от представленных.

Например, теория Калуцы-Клейна о пятимерном пространстве. Проблема только в одном. Теория Калуцы-Клейна не столь впечатляюща, как идеи Эверетта, и базируется на математических идеях, которые трудно изложить в форме понятных всем высказываний. Так что аргументов пока очень мало, но уверенности в сложности мира очень много...

zhvictorm пишет:

Предлагаемые суждения не являются аргументами, а являются гипотезами, т.е предположениями, которые не имеют пока какой-либо надежной экспериментальной проверки.

Согласен, это - типичные примеры «математической фантастки». Поэтому, я старательно изменял слова «теория» из на слово «гипотеза». Но осталась устойчивое уже в современной научной лексике понятие «М-теория», которую, конечно, правильнее назвать «М-гипотеза»? А «инфляционная теория» - это теория или гипотеза? А теория/гипотеза Большого взрыва? Последние, конечно, имеют больше экспериментальных аргументов в свою пользу, чем первые. Вопрос в том - где проводить границу между гипотезой и теорией? Может быть, лучше пользоваться более нейтральным (в отношении экспериментальных аргументов) терминов «модель»? Инфляционная модель, модель Большого взрыва, суперструнная модель и т.п.

zhvictorm пишет:

Четвертая гипотеза совсем невнятная.

Я её тоже плохо понял. И пятую - тоже. Но решил оставить их в статье, чтобы, может быть, вместе разобраться.

zhvictorm пишет:

И, наконец, существуют более продвинутые гипотезы, которые как раз могут расчитывать на аргументированность в отличие от представленных. Например, теория Калуцы-Клейна о пятимерном пространстве.

А разве модель Калуцы-Клейна предполагает множество миров? Насколько я помню, в ней вводится 5-е измерение, которое затем компактифицируется до малых масштабов (в более поздних вариантах модели - до планковских размеров). Но, Мир (Вселенная) в этой модели единичны.

Да, и самое главное - насколько модель Калуцы-Клейна подтверждена экспериментом? Или, может быть, есть какие-то другие критерии (кроме непосредственной экспериментальной подтверждённости), которые позволяют рассматривать некую модель, как серьёзную, заслуживающую внимания и являющуюся, в свою очередь, аргументом для чего-либо? Какие это могут быть критерии? Ну, например, красота теории , о чём писал Эйнштейн.

А «инфляционная теория» - это теория или гипотеза? А теория/гипотеза Большого взрыва?

На эти вопросы можно отвечать по разному в зависимости от того, к какой точке зрения Вы сами склоняетесь. Но все же есть определенные основания утверждать, что теория Большого взрыва или ее современная составляющая - модель инфляции, могут рассматриваться как теории. Теорию от гипотезы, как правило, отличает глубокая проработанность следствий сразу для многих различных наблюдаемых явлений. Если проверки достоверности выводов затруднены на данный момент времени, то теория может рассматриваться как гипотетическая. ОТО до сих пор можно рассматривать как гипотетическую теорию, поскольку не все в ней проверено. Например, гравитационные волны не обнаружены пока. Теория инфляции объясняет целый букет наблюдаемых явлений из различных разделов физики и астрофизики. Например, отсутствие монополей и отсутствие на небе точки начала Большого взрыва. Но проверить ее прямыми экспериментами не представляется возможным, но она содержит рецепты для построения математических выводов косвенных фактов, которые проверить можно или будет возможно.

...насколько модель Калуцы-Клейна подтверждена экспериментом?

Теория Калуцы-Клейна объясняет электромагнетизм наличием дополнительных измерений. Для начала достаточно одного. При этом она устроена так, что согласуется с ОТО. Поэтому ее обоснованность во многом связана с обоснованностью этих теорий. Но, естественно, содержит такие утверждения, которые пока не проверены. В частности, это касается существования дополнительных измерений. Однако именно органичность объединения ОТО и теории электромагнетизма в ней можно рассматривать как аргумент, хотя у нее в этом плане тоже есть проблемы. Что касается множественности миров, то любая теория, содержащая дополнительные измерения допускает неизбежно наличие многих Вселенных. М-теории с математической точки зрения хорошо развиты и с этой точки зрения могут рассматриваться как гипотетические теории или математические теории. Тем более, что они опираются на ОТО или ее обобщения, а иногда используют и теории типа Калуцы-Клейна. В обсуждаемой статье без особого основания выделены пять гипотез, которые между собой не очень связаны, и тем более не выделены на фоне других всяких гипотез и гипотетических теорий. Даже трудно понять какими предпочтениями пользовался собравший их, видимо, журналист.

zhvictorm пишет:

Теория Большого взрыва или ее современная составляющая - модель инфляции, могут рассматриваться как теории. ... ОТО до сих пор можно рассматривать как гипотетическую теорию, поскольку не все в ней проверено.

Интересно получается: теории Большого взрыва и инфляции, которые основаны на гипотетической ОТО. Как может быть надёжно установленное основываться на ненадёжно установленном?

zhvictorm пишет:

Теория Калуцы-Клейна объясняет электромагнетизм наличием дополнительных измерений. Для начала достаточно одного. При этом она устроена так, что согласуется с ОТО. Поэтому ее обоснованность во многом связана с обоснованностью этих теорий.

Первое . Опять имеет место ситуация: «теория Калуцы-Клейна, основанная на гипотетической ОТО».

Второе . Здесь проявляется интересный принцип: стремление сохранить (пусть и применить в новом ракурсе, но всё-же, сохранить) некую идею , однажды удачно применённую и далее - успешно выдержавшую испытание временем и экспериментом. В данном случае речь идёт об идее геометризации материи и её взаимодействий , которая впервые была удачно введена в физику Эйнштейном в его ОТО (хотя, конечно, она ранее высказывалась Клиффордом). Про идеи , эйдосы (по Платону), мемы (по Докинзу) мы .

zhvictorm пишет:

Что касается множественности миров, то любая теория, содержащая дополнительные измерения допускает неизбежно наличие многих Вселенных.

В отношении модели Калуцы-Клейна мне это не совсем понятно. 3+1-мерное пространство-время + компактифицированное 5-е измерение составляют одну вселенную (нашу). А где здесь вторая вселенная (и другие)?

zhvictorm пишет:

Именно органичность объединения ОТО и теории электромагнетизма в ней можно рассматривать как аргумент...

Вот это то, что примерно соответствует принципу красоты теории Эйнштейна : когда возникает новая идея-эйдос-мем, из которого на уровне теорий всё старое вдруг органично и просто («красиво») объединяется и объясняется. Это, действительно, является мощным аргументом, но - чисто умозрительным, не имеющим прямого отношения к эксперименту . Так, например, и Коперник руководствовался желанием упростить систему Мира Птолемея, уже обросшую эпициклами, дифферентами и эквантами, но, вместе с тем - дававшую очень хорошее совпадение с опытом. Поразительное сходство ситуации с современной Стандартной моделью, дающей отличное совпадение с экспериментом! И идеи-эйдосы в системе Птолемея были выдержаны: 1) геоцентричность, т.е. расположение Богом созданной Земли в центре Мира и 2) идеальность кругового равномерного движения божественных небесных тел - планет . Все «навороты» в системе Птолемея были подчинены желанию сохранить эти «надёжные и веками проверенные» эйдосы. Прямо, как в Стандартной модели - есть идея симметрии и её последующего нарушения и усилия большинства физиков-теоретиков второй половины 20 века и начала 21 века, изучающих частицы, направлены на то, чтобы сохранить (пусть и применить в новом ракурсе , но всё-же, сохранить) идей-эйдосы, родившиеся в ходе революции в физике первой трети 20 века. Идея симметрии - одна из них (но не единственная, конечно!). В результате и возникли те «навороты», которые вылились в Стандартную модель (симметрии частиц, калибровочные поля, механизм Хиггса и т.п.) и далее - в модель суперсимметрии (симметрии уже между фермионами и бозонами). И во время Коперника, как и сейчас, всё, вроде, хорошо... Сторонники роли науки, как служанки практики были довольны - по эфемеридам светил, вычисленным по Птолемею, можно было спокойно вести корабли с товарами во все концы Мира. Только вот, одна закавыка... Пытливому уму Коперника (ох, уж эти «умники»!) было непонятно - в чём физический (или, правильнее сказать для той эпохи - божественный) смысл того, что планеты движутся не по геоцентричным окружностям, а по эпициклам, да ещё сдвинутым на экванты? Также и сейчас становится всё более непонятно - в чём физический смысл суперсимметрий или, например, процедуры перенормировки, или почему существует всего 3 поколения лептонов и кварков и т.д., и т.д. Не говоря уже о вопросе о физическом смысле комплексности и вероятностности пси-функции... Коперник в качестве выхода из сложившейся ситуации предложил новую идею-эйдос - гелиоцентричность и всё органично и просто объяснилось . Правда вот с «соответствием опыту» у него было не всё хорошо: система Птолемея давала гораздо большую точность эфемерид. А всё потому, что Коперник «недотянул» до эйдоса эллиптичности орбит , который открыл только Кеплер, а объяснил Ньютон. Так что, модель Коперника была, в лучшем случае, гипотезой, но главным в ней был новый эйдос (строго говоря, не совсем новым: и идеи Птолемея и идеи Коперника и идеи Кеплера - родом из античности, но они были применены этими исследователями на более высоком уровне конкретности и развёрнутости).

Так не нуждается ли современная физика частиц в новых идеях-эйдосах, а не в бесконечном «наворачивании» старых?

Илья! Вообще-то смысл моего комментария был исключительно о неясности выбора "аргументов"-гипотез относительно гипотезы множественности миров.

Теорию Калуцы-Клейна я привел в качестве примера, который в большей степени может рассчитывать на аргументированность своего существования, чем приведенные в статье. Что касается гипотетичности ОТО и связанных с ней теорий, то этот вопрос достаточно сложный и требует обсуждения проблем уже в форме некоторых математических построений. Тем более, я не говорил об абсолютной надежности таких теорий как теория Больщого взрыва (ТБО) и модель космологической инфляции (МКИ). Однако можно предполагать, что если даже ОТО будет существенно модифицирована, то основные элементы ТБО и МКИ могут остаться неизменными. Например, решения Фридмана имеют и классический аналог - взрыв в плоском пространстве сферического объекта. Поэтому все эти теории гипотетические в той или иной мере.

Что касается теории Калуцы-Клейна . Во-первых, компактификация не является обязательным атрибутом теории Калуцы-Клейна. Компактификацию ввели, чтобы объянить то, что мы не наблюдаем дополнительных измерений. Идея компактификации - лишь один из вариантов. Во-вторых, если наблюдаемое пространство трехмерно, а общее имеет размерность n+1, то в этом объемлющем прострастве могут уместиться сколько угодно трехмерных. Например, компактификация может быть многозначной. В любой многомерной теории есть место для множественности миров. В-третьих, органичность сочетания ОТО и электромагнетизма в теории Калуцы-Клейна дает лишь аргумент в пользу этой теории, но не делает ее истинной.

Теперь о том, какие идеи нужны современной физике . Во все времена любой науке нужны плодотворные идеи, которые могут объяснить наблюдаемые явления в максимальной степени. Называть эти идеи можно как угодно. Это не принципиально. Во времена Аристотеля плодотворной идеей была идея эпициклов, во времена Кеплера - теория эллиптических орбит. Чуть позже их место заняла небесная механика. Идеи симметрии всегда были полезны, если не возводить их в ранг абсолюта. Поэтому современной физике нужны новые идеи, как и в любые другие времена.

Однако, как говорил Ходжа Насреддин, сколько не произноси слово сахар, во рту слаще не станет. Эти идеи надо искать и проверять, искать и проверять... . Других рецептов, кроме великой идеи научного тыка, просто нет. Если что-то можно применить из старого багажа, то это просто счастье, а консерватизм в науке, если он не переходит определенной грани, полезен в том смысле, что это отсеивает необоснованные теории. К сожалению, это не всегда в науке выдерживается, и ряд теорий слишком долго ждали своего использования. Ну это уже определяется обстановкой в обществе и науке в целом.

zhvictorm пишет:

Современной физике нужны новые идеи, как и в любые другие времена.

Однако, как говорил Ходжа Насреддин, сколько не произноси слово сахар, во рту слаще не станет. Эти идеи надо искать и проверять, искать и проверять... . Других рецептов, кроме великой идеи научного тыка, просто нет.

Согласен насчёт сахара, только вот метод научного тыка (перебора) - это, мягко говоря, не самый эффективный способ поиска. Нужно изучать общие закономерности развития физического знания и следовать им более осознанно в поисках новых фундаментальных и эффективных идей. Впрочем, может быть, именно это и отражено в характеристике тыка, как научного ?

Хочу высказать своё мнение о том, что общество, а значит, и мы в какой-то степени, можем сделать для того, чтобы повысить вероятность появления новых фундаментальных физических идей и теорий. Что мы можем сделать (делать) здесь и сейчас , а не ждать пока они случайно появятся.

zhvictorm пишет:

Если что-то можно применить из старого багажа, то это просто счастье, а консерватизм в науке, если он не переходит определенной грани, полезен в том смысле, что это отсеивает необоснованные теории. К сожалению, это не всегда в науке выдерживается, и ряд теорий слишком долго ждали своего использования. Ну это уже определяется обстановкой в обществе и науке в целом.

Вселенная, в которой мы живём, может быть не единственной.

Хотя такая концепция и может удивлять, за ней стоит отличная физика. И существует не только один способ убедиться в этом — многочисленные физические теории независимо друг от друга приводят к такому выводу. В самом деле, некоторые эксперты считают, что существование скрытых вселенных скорее более вероятно, нежели нет. Вот пять наиболее правдоподобных научных теорий, предполагающих, что мы живём в МегаВселенной.

1. Математические Вселенные

Учёные спорят: математика – это просто полезный инструмент для описания Вселенной, или сама математика и есть фундаментальная реальность — и наши наблюдения за Вселенной всего лишь несовершенные представления о её истинном математическом характере. Если верно последнее, то, возможно, существуют математические инварианты нашей Вселенной.

В этих структурных инвариантах выполняются законы математической логики, порой отличной от логики привычного для нас Мира.

«Математическая структура является тем, что можно описать неким образом, полностью зависящим от человеческого багажа знаний», говорит Макс Тегмарк из Массачусетского технологического института, который предложил эту идею. «Я действительно считаю, что эта вселенная есть, что она может существовать независимо от меня, и что будет продолжать существовать, даже если не будет никаких людей».

Иными словами, эти инварианты вообще не зависят от наличия человечества, которое пытается их осознать.

2. Дочерние Вселенные

Теория квантовой механики, которая царит в мире субатомных частиц, предлагает ещё один способ существования множественных вселенных. Квантовая механика описывает мир в терминах вероятностей, а не определённых результатов. И математика этой теории предполагает, что все возможные результаты случаются — в их собственных отдельных вселенных.

Например, если вы достигнете перекрёстка, где вы можете пойти направо или налево, настоящая Вселенная порождает две дочерних вселенных: ту, в которой вы идёте налево, и ту, в которой вы идёте направо, и отличить их невозможно.

3. Параллельные Вселенные

Ещё одна идея, которая возникает из теории струн — параллельные вселенные, которые просто парят вне досягаемости нашей собственной. Идея исходит от возможности существования большего числа измерений, чем в нашем мире. В дополнение к нашей собственной трёхмерной реальности пространства, другие трёхмерные реальности могут плавать в многомерном пространстве.

Физик Брайан Грин из Колумбийского университета описывает это так: «Наша Вселенная всего лишь один «блок» из огромного количества «блоков», плавающих в пространстве с множеством измерений».

Некоторые следствия из этой теории предполагают, что время от времени эти параллельные вселенные не всегда параллельны и не всегда вне досягаемости. Иногда они могут врезаться друг в друга, в результате чего происходят Большие Взрывы, что вызывает порождение всё новых и новых вселенных.

4. Пузырьковые Вселенные

В научном мире имеются и другие теории развития вселенных, в том числе теория хаотической инфляции.

Эта теория предполагает, что после Большого Взрыва Вселенная расширялась подобно надуваемому воздушному шарику и часть её успела оформиться в виде «пузыря» привычной для нас Вселенной, давшей возможность сформироваться звёздам.

Но в некоторых частях пространства-времени процессы шли по-иному, и в результате сформировались множество других изолированных вселенных – в виде отдельных «пузырьков», подобно выдуваемым мыльным пузырям – разного размера, на разных стадиях развития с собственными физическими константами и законами.

Концепция была предложена космологом Александром Виленкиным, ныне работающим в университете Тафтса.

5. Бесконечные Вселенные

Учёные считают наиболее вероятной плоскую форму пространства-времени (в отличие от сферической или тороидальной).

Но если пространство-время бесконечно и продолжается вечно, то в какой-то момент оно должно начать повторяться, потому что существует конечное число способов, по которым частицы могут быть расположены в пространстве и времени.

Так что, если пройти достаточно далеко, можно столкнуться с другой вашей версией – и на самом деле, их бесконечное множество. Некоторые из этих близнецов будет делать именно то, что вы делаете сейчас, в то время как другие наденут различные свитера сегодня утром, и они могут иметь совершенно разные карьеры и различные образы жизни.

Поскольку наблюдаемая Вселенная расширяется только в 13,7 млрд. лет после Большого взрыва (что эквивалентно размеру в 13,7 млрд. световых лет), пространство-время за этой границей может считаться самостоятельной отдельной Вселенной. Таким образом, множество вселенных существует рядом друг с другом как гигантское лоскутное одеяло вселенных.

  • Перевод

Что вы думаете по поводу мультивселенной? Вопрос не был совсем уж неожиданным для нашей импровизированной лекции за обеденным столом, но он застал меня врасплох. Не то, чтобы меня никогда раньше не спрашивали о мультивселенной, но объяснять теоретическую конструкцию – это одно, а объяснять свои чувства к ней – совсем другое. Я могу озвучить все стандартные аргументы и главные вопросы по мультивселенной, я могу ориентироваться в фактах и технических подробностях, но в результатах я теряюсь.

Физики не привыкли говорить о том, как они относятся к чему-то. Мы за твёрдое знание, количественные оценки и эксперименты. Но даже лучшие из беспристрастных анализов начинаются только после того, как мы решаем, в какую сторону нам идти. В зарождающейся области обычно возникает выбор из возможностей, у каждой из которых есть свои достоинства, и часто мы выбираем одну из них инстинктивно. Этот выбор определяется эмоциональными рассуждениями, стоящими над логикой. То, с какой позицией вы ассоциируете себя, это, как говорит физик из Стэнфордского университета Леонард Сасскинд, «больше, чем просто научные факты и философские принципы. Это вопрос хорошего вкуса в науке. И, как и все споры о вкусах, в нём участвуют эстетические чувства».


Сам я занимаюсь теорией струн, и одной из её особенностей является возможность существования множества логически непротиворечивых вариантов вселенных, отличных от нашей. Процесс, создавший нашу Вселенную, может создать и те, другие, что приводит к бесконечному количеству вселенных, где происходит всё, что может произойти. Последовательность рассуждений начинается со знакомого мне места, и я могу следовать завитушкам, которые проделывают уравнения в своём танце на странице, приводящем к этому заключению, но, хотя я представляю себе мультивселенную, как математическую конструкцию, я не могу поверить, что она вдруг выскочит из области теорий и проявит себя в реальности. Как я могу притворяться, что у меня нет проблем с бесконечным количеством копий меня самого, расхаживающих по параллельным мирам, и принимающих решения, как схожие, так и отличающиеся от моих?

Я не один такой двойственный. Дебаты по поводу мультивселенной были горячими, и она остаётся источником противоречий среди самых выдающихся учёных нашего времени. Дебаты по мультивселенной – это не просто обсуждение частностей теории. Это борьба по теме идентичности и результатов, по поводу того, на чём основывается объяснение, из чего состоит доказательство, как мы определяем науку, и есть ли во всём этом смысл.

Когда бы я ни рассказывал о мультивселенной, на один из неизбежно возникающих вопросов у меня есть ответ. Живём ли мы во вселенной или мультивселенной, эти классификации относятся к масштабам, размер которых выходит за рамки воображения. Вне зависимости от результата, жизнь вокруг нас не изменится. Так какая разница?

Разница есть, поскольку то, где мы находимся, влияет на то, кто мы есть. Разные места приводят к разным реакциям, из которых возникают различные возможности. Один объект может выглядеть по-разному на разном фоне. Мы определяемся тем пространством, которое мы населяем, гораздо большим количеством способов, чем мы осознаём. Вселенная – это предел расширения. Она содержит все места действия, все контексты, в которых мы можем представить бытие. Она представляет общую сумму возможностей, полный набор всего, чем мы можем быть.

Измерение имеет смысл только в системе отсчёта. Числа очевидно абстрактны, пока им не назначены единицы измерения, но даже такие размытые определения, как «слишком далеко», «слишком маленький», «слишком странный» подразумевают некую систему координат. Слишком далеко подразумевает точку отсчёта. Слишком маленький относится к шкале. Слишком странный подразумевает контекст. В отличие от всегда объявляемых единиц измерения, система отсчёта предположений определяется редко, но всё-таки значения, присваиваемые вещам – объектам, явлениям, опыту – откалиброваны по этим невидимым осям.

Если мы обнаружим, что всё что мы знаем и можем узнать, находится всего лишь в одном из карманов мультивселенной, сдвинется весь фундамент, на котором мы расположили нашу координатную сетку. Наблюдения не изменятся, но изменятся выводы. Наличие других пузырьковых вселенных возможно и не окажет влияния на те измерения, что мы проводим, но может повлиять на то, как мы их интерпретируем.

Первое, что поражает в мультивселенной – её необъятность. Она больше, чем что-либо, с чем имело дело человечество – такое возвеличивание подразумевается в самом названии. Можно было бы понять, если бы эмоциональная реакция на мультивселенную происходила бы от чувства собственного преуменьшения. Но размер мультивселенной, наверное, наименее противоречивое из её свойств.

Жиан Жудис , глава теоретиков ЦЕРН, говорит от имени физиков, когда утверждает, что один взгляд в небо прочищает нам мозги. Мы уже представляем себе наши масштабы. Если мультивселенная существует, то, как он говорит, «проблема противопоставления меня и необъятности вселенной не изменится». Многих даже успокаивает такая космическая перспектива. По сравнению со вселенной все наши проблемы и жизненные драмы уменьшаются так сильно, что «всё, что здесь происходит, не имеет никакого значения», говорит физик и автор Лоуренс Краусс . «Меня это очень утешает».

От потрясающих фотографий, сделанных телескопом им. Хаббла, до поэм Октавио Паса об «обширной ночи» и «галактической песни» Монти Пайтонов, существует романтизм, связанный с нашим лилипутским масштабом. В какой-то момент нашей истории мы смирились с нашей бесконечной малостью.

Не из-за нашей ли боязни масштабов мы так неохотно принимаем понятие мультивселенной, включающее миры, находящиеся вне нашего поля зрения, и обречённые там находиться? Это, конечно, очень частая жалоба, которую я слышу от моих коллег. Южноафриканский физик Джордж Эллис, сильно возражающей против мультивселенной, и британский космолог Бернард Карр, настолько же сильно за неё агитирующий, обсуждали эти вопросы в нескольких очаровательных разговорах. Карр считает, что их точка расхождения относится к тому, «какие свойства науки необходимо считать неприкосновенными». Обычным показателем служат эксперименты. Сравнительные наблюдения – допустимая замена. Астрономы не в состоянии управлять галактиками, но обозревают их миллионами, в разных формах и состояниях. Ни один из методов не подходит мультивселенной. Лежит ли она, в таком случае, за пределами научной области?

Сасскинд, один из отцов теории струн, обнадёживает нас. В эмпирической науке существует третий подход: делать выводы о невидимых объектах и явлениях из того, что мы в состоянии увидеть. Для примера достаточно будет взять субатомные частицы. Кварки навечно связаны в протоны, нейтроны и другие составные частицы. «Они, так сказать, скрыты за завесой,- говорит Сасскинд,- но сейчас, хотя ни единого изолированного кварка мы не видели, никто всерьёз не будет подвергать сомнению правильность теории кварков. Это часть фундамента современной физики».

Поскольку Вселенная расширяется с ускорением, галактики, находящиеся сейчас на горизонте поля зрения, вскоре исчезнут за ним. Мы не считаем, что они уйдут в небытие, так же, как мы не считаем, что корабль будет дезинтегрирован, скрывшись за горизонтом. Если известные нам галактики могут существовать в отдалённых районах за пределами поля зрения, кто скажет, что там не может быть и чего-то другого? Вещей, которые мы никогда не видели, и никогда не увидим? Как только мы признаем возможность существования регионов, находящихся вне нашего кругозора, последствия вырастают экспоненциально. Британский королевский астроном Мартин Рис сравнивает эту линию рассуждений с терапией, направленной на выработку отвращения. Когда вы признаёте наличие галактик вне нашего текущего горизонта, вы «начинаете с маленького паука, находящегося очень далеко», но, вы не успеете оглянуться, как дадите волю возможности существования мультивселенной, населённой бесконечными мирами, возможно, сильно отличающимися от вашего – то бишь, «найдёте тарантула, ползающего по вам».

Отсутствие возможности напрямую управлять объектами никогда не было моим персональным критерием определения пригодности физической теории. Если что-то и волнует меня по поводу мультивселенной, уверен, к этому оно отношения не имеет.

Мультивселенная бросает вызов ещё одному дорогому нам представлению – уникальности. Может ли это быть причиной проблем? Как поясняет космолог Александр Виленкин, неважно, насколько велик наблюдаемый регион, пока он конечен, он может находиться в конечном числе квантовых состояний. И описание этих состояний однозначно определяет содержимое региона. Если этих регионов бесконечно много, то то же самое состояние обязательно будет воспроизведено где-то ещё. Даже наши слова будут точно воспроизведены. Поскольку процесс продолжается в бесконечность, наших копий тоже будет бесконечное количество.

«Наличие этих копий вгоняет меня в депрессию,- говорит Виленкин. – У нашей цивилизации есть много отрицательных черт, но мы хотя бы могли заявлять об её уникальности – как о произведении искусства. А теперь мы и этого не можем сказать». Я понимаю, что он имеет в виду. Это волнует и меня, но не уверен, что именно эта мысль лежит в основе моей неудовлетворённости. Как говорит с тоской Виленкин, «Я недостаточно самонадеян, чтобы говорить реальности, какой она должна быть».

Главная загадка дебатов заключается в странной иронии. Хотя мультивселенная увеличивает нашу концепцию физической реальности до почти невообразимого размера, она вызывает чувство клаустрофобии, поскольку проводит границу нашего знания и наших возможностей получения знаний. Теоретики мечтают о мире без своевольности, описываемом самодостаточными уравнениями. Наша цель – найти логически полную теорию, сильно ограниченную самодостаточностью, и принимающую только одну форму. Тогда для нас, даже не знающих, откуда или почему взялась эта теория, её структура не будет выглядеть случайной. Все фундаментальные константы природы появятся «из математики, числа π и двоек», как говорит физик из Беркли Рафаэль Буссо .

В этом притягательность Общей теории относительности Эйнштейна – причина, по которой физики всего мира восклицают из-за её необычной бессмертной красоты. Соображения симметрии диктуют уравнения так чётко, что теория кажется неизбежной. Именно это мы хотели повторить в других областях физики. И пока у нас ничего не получилось.

Десятилетиями учёные ищут физические причины того, почему фундаментальные константы обязаны принимать именно такие значения, какие у них имеются, но пока ещё ни одной причины обнаружено не было. И вообще, если мы используем имеющиеся теории, чтобы вычислять возможные значения некоторых из известных параметров, результаты оказываются до смешного далеки от измеренных величин. Но как же объяснить эти параметры? Если существует всего одна-единственная вселенная, то управляющие ей параметры должны быть облечены особым значением. Либо процесс, управляющий выбором параметров, случаен, либо в нём есть некая логика, или даже продуманная цель.

Ни один из вариантов не выглядит привлекательно. Мы, учёные, проводим жизнь в поисках законов, поскольку считаем, что всё происходит по какой-то причине, даже если она нам неизвестна. Мы ищем закономерности, потому что верим в некий порядок во вселенной, даже если не видим его. Чистая случайность не вписывается в это мировоззрение.

Но говорить о разумном плане тоже не хочется, ведь это подразумевает существование некоей силы, предшествовавшей законам природы. Эта сила должна выбирать и судить, что, в отсутствие такой чёткой, сбалансированной и жёстко ограниченной структуры, как, например, ОТО, подразумевает произвол. В идее о возможности существования нескольких логически непротиворечивых вселенных, из которых была выбрана только одна, есть что-то откровенно неудовлетворительное. Если бы это было так, то, как говорит космолог Деннис Сциама , придётся думать, что «существует некто, изучающий такой список, и приговаривающий, "Нет, такой вселенной у нас не будет, и такой не будет. Будет только вот такая"».

Лично меня такой вариант, со всеми его подтекстами по поводу того, что могло бы быть, огорчает. На ум приходят различные сцены: брошенные дети в приюте из какого-то забытого фильма, когда одного из них усыновляют; лица людей, лихорадочно стремившихся к мечте, но не достигших её; выкидыши в первом триместре. Такие вещи, которые почти уже родились, но не смогли, мучают меня. Если не существует теоретического ограничения, исключающего все возможности, кроме одной, такой выбор кажется жестоким и несправедливым.

В таком тщательно настроенном творении как объяснить ненужные страдания? Поскольку эти философские, этические и моральные проблемы не относятся к области физики, большинство учёных избегает их обсуждений. Но нобелевский лауреат Стивен Вайнберг высказался от их имени: «Есть ли в нашей жизни следы великодушного творца – на этот вопрос каждый ответит для себя. Моя жизнь была удивительно счастливой. Но всё равно, я видел, как моя мать мучительно умирала от рака, как болезнь Альцгеймера разрушала личность отца, и как множество двоюродных и троюродных родственников было убито при Холокосте. Признаки присутствия великодушного творца очень хорошо спрятаны».

Перед лицом боли принять случайность гораздо легче, чем чёрствое игнорирование или намеренное злодеяние, присутствующее в дотошно продуманной вселенной.

Мультивселенная обещала отвлечь нас от этих ужасных мыслей, дать нам третий вариант, побеждающий дилемму объяснения.

Конечно, мультивселенную физики придумали не для этого. Она появилась из других соображений. Теория космической инфляции должна была объяснить широкомасштабную гладкость и отсутствие кривизны Вселенной. «Мы искали простое объяснение тому, почему Вселенная похожа на большой шар,- говорит физик из Стэнфорда Андрей Линде. – Мы не знали, что что-то пойдёт к этой идее в нагрузку». Нагрузкой стало понимание того, что наш Большой взрыв был не уникальным, и что, вообще-то, должно существовать бесконечное количество таких взрывов, каждый из которых создаёт не связанное с нашим пространство-время.

Затем появилась теория струн. На сегодня это лучший кандидат на объединённую теорию всего. Она не только достигает невозможного – примирения гравитации и квантовой механики – но просто-таки настаивает на этом. Но для схемы, уменьшающей невероятное разнообразие вселенной до минимального набора строительных кирпичиков, теория струн страдает от унизительной проблемы: мы не знаем, как определить точные значения фундаментальных констант. По текущим прикидкам, существует потенциальных возможностей – неизмеримо огромное число, для которого у нас даже нет названия. Теория струн перечисляет все формы, которые способны принять законы физики, и инфляция даёт возможность для их реализации. С рождением каждой новой вселенной тасуется воображаемая колода карт. Розданная рука определяет законы, управляющие вселенной.

Мультивселенная объясняет, каким образом константы из уравнений приобрели присущие им значения, не привлекая случайность или разумный выбор. Если есть множество вселенных, в которых реализованы все возможные законы физики, мы получаем именно такие значения при измерениях, потому что наша вселенная находится именно на этом месте ландшафта. Никакого более глубокого объяснения нет. Всё. Это и есть ответ.

Но, освобождая нас от старой дихотомии, мультивселенная оставляет нас в тревожном состоянии. У вопроса, над которым мы бились так долго, может не быть более глубокого ответа, чем «так всё устроено». Возможно, это лучшее, что мы можем сделать, но мы к таким ответам не привыкли. Он не срывает покровы и не объясняет, как всё работает. Более того, он разбивает мечту теоретиков, утверждая, что уникального решения найти нельзя, поскольку его не существует.

Некоторым людям не по душе такой ответ, другие считают, что это и ответом-то назвать нельзя, а иные просто принимают его.

Нобелевскому лауреату Дэвиду Гроссу кажется, что мультивселенная «попахивает ангелами». Он говорит, что принятие мультивселенной сродни тому, что вы сдаётесь, принимая, что вы никогда ничего не поймёте, потому что всё наблюдаемое можно свести к «исторической случайности». Его коллега по нобелевке, Герард ’т Хоофт, жалуется, что не может принять сценарий, по которому нужно «перебирать все решения, пока не найдёте соответствующее нашему миру». Он говорит: «физики не работали так в прошлом, и ещё можно надеяться, что в будущем у нас появятся доказательства получше».

Космолог из Принстона, Пол Стейнхардт называет мультивселенную «теорией чего угодно», потому что она всё допускает и ничего не объясняет. «Научная теория обязана быть избирательной,- говорит он. – Её сила в исключаемом количестве возможностей. Если она включает все возможности, то не исключает ничего, и сила её нулевая». Стейнхардт был одним из ранних сторонников инфляции, пока не понял, что она приводит к мультивселенной, и порождает пространство возможностей, вместо того, чтобы делать конкретные предсказания. С тех пор он стал одним из самых громких критиков инфляции. В недавнем эпизоде Star Talk он представился, как поборник альтернатив мультивселенной. «Чем вам так насолила мультивселенная? - пошутил ведущий. – Она уничтожила одну из моих любимых идей», ответил Стейнхардт.

Физики должны были заниматься истиной, абсолютными понятиями, предсказаниями. Либо вещи такие, либо не такие. Теории не должны быть гибкими или инклюзивными, они должны быть ограничивающими, строгими, исключающими варианты. Для любой ситуации хочется иметь возможность предсказать вероятный – а в идеале, единственный и неизбежный – результат. Мультивселенная ничего такого нам не даёт.

Дебаты по поводу мультивселенной часто выливаются в шумные споры, где скептики обвиняют поборников идеи в предательстве науки. Но важно осознать, что такое положение вещей никто не выбирал. Всем хочется вселенную, органически возникающую из прекрасных глубоких принципов. Но из того, что нам известно, в нашей вселенной такого нет. Она такая, какая есть.

Нужно ли спорить против идеи мультивселенной? Должна ли она остаться на вторых ролях? Многие мои коллеги пытаются представить её в более выгодном свете. Логически рассуждая, с бесконечным количеством вселенных работать проще, чем с одной – меньше вещей приходится объяснять. Как говорил Сциама, мультивселенная «в каком-то смысле удовлетворяет бритве Оккама, поскольку вам хочется минимизировать количество случайных ограничений, налагаемых на вселенную». Вайнберг говорит, что теория, свободная от произвольных предположений, и не подвергавшаяся «тщательной подстройке для соответствия наблюдениям», красива сама по себе. Может оказаться, что эта красота сходна с красотой термодинамики, со статистической красотой, объясняющей состояние макроскопической системы, но не каждой из её отдельных компонент. «В поисках красоты нельзя быть заранее уверенным в том, где вы её обнаружите, или какую именно красоту найдёте», говорит Вайзенберг.

Много раз, когда я размышлял над этими сложными интеллектуальными проблемами, мысли мои возвращались к простой и прекрасной мудрости Маленького принца из произведения Антуана де Сент-Экзюпери, который, считая свою любимую розу единственной для всех миров, оказался в розовом саду. Сбитый с толку таким предательством и огорченный утратой важности – его розы и себя самого – он плачет. В итоге он понимает, что его роза «важнее сотен остальных», потому что она его.

В нашей Вселенной может не быть ничего особенного, кроме того, что она наша. Разве этого не достаточно? Даже если все наши жизни и всё, что мы можем познать, окажутся незначительными в масштабах космоса, они всё же наши. Есть что-то особенное в здесь и сейчас, в том, что нечто – моё.

Несколько раз за последние месяцы я воспроизводил в уме мой разговор с Жианом Жудисом. Я находил уверенность в том, как спокойно он относился к огромному количеству возможных вселенных и вроде бы случайных выборах, сделанных нашей. Возможно, мультивселенная просто сообщает нам, что мы работаем не над теми вопросами, говорит он. Возможно, как Кеплер с орбитами планет, мы пытаемся найти в числах более глубокий смысл, чем там есть.

Поскольку Кеплер знал лишь о существовании Солнечной системы, он считал, что в форме орбит планет и в расстояниях между ними скрыта какая-то важная информация, но оказалось, что это не так. Эти значения не были фундаментальными, они были просто данными об окружении. В то время это могло показаться прискорбным, но с точки зрения ОТО мы уже не испытываем чувства потери. У нас есть прекрасное объяснение гравитации. Просто в этом объяснении значения, связанные с орбитами планет, не являются фундаментальными константами.

Возможно, говорит Жудис, мультивселенная подразумевает нечто похожее. Может, нам надо отказаться от того, за что мы хватаемся. Может, нужно мыслить шире, перегруппироваться, поменять вопросы, задаваемые нами природе. По его словам, мультивселенная может открыть «чрезвычайно удовлетворительные, приятные и расширяющие взгляд возможности».

Из всех аргументов в пользу мультивселенной этот нравится мне больше всего. В любом сценарии в любой физической системе можно задать бесконечно много вопросов. Мы пытаемся распутать проблему до её основ и спрашивать самые базовые вопросы, но наша интуиция построена на том, что было раньше, и возможно, что мы основываемся на парадигмах, уже не имеющих отношения к новым областям, которые мы пытаемся изучить.

Мультивселенная больше похожа на ключ, чем на закрытую дверь. С моей точки зрения, мир окрасился надеждой и наполнился возможностями. Он не более расточителен, чем беседка, полная роз.

 

 

Это интересно: