→ Как находить синусы косинусы тангенсы. Тригонометрия. Свойства тангенса и котангенса

Как находить синусы косинусы тангенсы. Тригонометрия. Свойства тангенса и котангенса


В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2



|BD| - длина дуги окружности с центром в точке A .
α - угол, выраженный в радианах.

Синус (sin α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.
Косинус (cos α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x


График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

См. также:

Отношение противолежащего катета к гипотенузе называют синусом острого угла прямоугольного треугольника.

\sin \alpha = \frac{a}{c}

Косинус острого угла прямоугольного треугольника

Отношение близлежащего катета к гипотенузе называют косинусом острого угла прямоугольного треугольника.

\cos \alpha = \frac{b}{c}

Тангенс острого угла прямоугольного треугольника

Отношение противолежащего катета к близлежащему катету называют тангенсом острого угла прямоугольного треугольника.

tg \alpha = \frac{a}{b}

Котангенс острого угла прямоугольного треугольника

Отношение близлежащего катета к противолежащему катету называют котангенсом острого угла прямоугольного треугольника.

ctg \alpha = \frac{b}{a}

Синус произвольного угла

Ордината точки на единичной окружности , которой соответствует угол \alpha называют синусом произвольного угла поворота \alpha .

\sin \alpha=y

Косинус произвольного угла

Абсцисса точки на единичной окружности, которой соответствует угол \alpha называют косинусом произвольного угла поворота \alpha .

\cos \alpha=x

Тангенс произвольного угла

Отношение синуса произвольного угла поворота \alpha к его косинусу называют тангенсом произвольного угла поворота \alpha .

tg \alpha = y_{A}

tg \alpha = \frac{\sin \alpha}{\cos \alpha}

Котангенс произвольного угла

Отношение косинуса произвольного угла поворота \alpha к его синусу называют котангенсом произвольного угла поворота \alpha .

ctg \alpha =x_{A}

ctg \alpha = \frac{\cos \alpha}{\sin \alpha}

Пример нахождения произвольного угла

Если \alpha — некоторый угол AOM , где M — точка единичной окружности, то

\sin \alpha=y_{M} , \cos \alpha=x_{M} , tg \alpha=\frac{y_{M}}{x_{M}} , ctg \alpha=\frac{x_{M}}{y_{M}} .

Например, если \angle AOM = -\frac{\pi}{4} , то: ордината точки M равна -\frac{\sqrt{2}}{2} , абсцисса равна \frac{\sqrt{2}}{2} и потому

\sin \left (-\frac{\pi}{4} \right)=-\frac{\sqrt{2}}{2} ;

\cos \left (\frac{\pi}{4} \right)=\frac{\sqrt{2}}{2} ;

tg ;

ctg \left (-\frac{\pi}{4} \right)=-1 .

Таблица значений синусов косинусов тангенсов котангенсов

Значения основных часто встречающихся углов приведены в таблице:

0^{\circ} (0) 30^{\circ}\left(\frac{\pi}{6}\right) 45^{\circ}\left(\frac{\pi}{4}\right) 60^{\circ}\left(\frac{\pi}{3}\right) 90^{\circ}\left(\frac{\pi}{2}\right) 180^{\circ}\left(\pi\right) 270^{\circ}\left(\frac{3\pi}{2}\right) 360^{\circ}\left(2\pi\right)
\sin\alpha 0 \frac12 \frac{\sqrt 2}{2} \frac{\sqrt 3}{2} 1 0 −1 0
\cos\alpha 1 \frac{\sqrt 3}{2} \frac{\sqrt 2}{2} \frac12 0 −1 0 1
tg \alpha 0 \frac{\sqrt 3}{3} 1 \sqrt3 0 0
ctg \alpha \sqrt3 1 \frac{\sqrt 3}{3} 0 0

Синус является одной из основных тригонометрических функций, применение которой не ограничено одной лишь геометрией. Таблицы вычисления тригонометрических функций, как и инженерные калькуляторы, не всегда под рукой, а вычисление синуса порой нужно для решения различных задач. Вообще, вычисление синуса поможет закрепить чертёжные навыки и знание тригонометрических тождеств.

Игры с линейкой и карандашом

Простая задача: как найти синус угла, нарисованного на бумаге? Для решения понадобится обычная линейка, треугольник (или циркуль) и карандаш. Простейшим способом вычислить синус угла можно, разделив дальний катет треугольника с прямым углом на длинную сторону - гипотенузу. Таким образом, сначала нужно дополнить острый угол до фигуры прямоугольного треугольника, прочертив перпендикулярную одному из лучей линию на произвольном расстоянии от вершины угла. Потребуется соблюсти угол именно 90°, для чего нам и понадобится канцелярский треугольник.

Использование циркуля немного точнее, но займёт больше времени. На одном из лучей нужно отметить 2 точки на некотором расстоянии, настроить на циркуле радиус, примерно равный расстоянию между точками, и прочертить полуокружности с центрами в этих точках до получения пересечений этих линий. Соединив точки пересечения наших окружностей между собой, мы получим строгий перпендикуляр к лучу нашего угла, остаётся лишь продлить линию до пересечения с другим лучом.

В полученном треугольнике нужно линейкой измерить сторону напротив угла и длинную сторону на одном из лучей. Отношение первого измерения ко второму и будет искомой величиной синуса острого угла.

Найти синус для угла больше 90°

Для тупого угла задача не намного сложнее. Нужно прочертить луч из вершины в противоположную сторону с помощью линейки для образования прямой с одним из лучей интересующего нас угла. С полученным острым углом следует поступать как описано выше, синусы смежных углов, образующих вместе развёрнутый угол 180°, равны.

Вычисление синуса по другим тригонометрическим функциям

Также вычисление синуса возможно, если известны значения других тригонометрических функций угла или хотя бы длины сторон треугольника. В этом нам помогут тригонометрические тождества. Разберём распространённые примеры.

Как находить синус при известном косинусе угла? Первое тригонометрическое тождество, исходящее из теоремы Пифагора, гласит, что сумма квадратов синуса и косинуса одного и того же угла равна единице.

Как находить синус при известном тангенсе угла? Тангенс получают делением дальнего катета на ближний или делением синуса на косинус. Таким образом, синусом будет произведение косинуса на тангенс, а квадратом синуса будет квадрат этого произведения. Заменяем косинус в квадрате на разность между единицей и квадратным синусом согласно первому тригонометрическому тождеству и путём нехитрых манипуляций приводим уравнение к вычислению квадратного синуса через тангенс, соответственно, для вычисления синуса придётся извлечь корень из полученного результата.

Как находить синус при известном котангенсе угла? Значение котангенса можно вычислить, разделив длину ближнего от угла катета на длину дальнего, а также поделив косинус на синус, то есть котангенс - функция, обратная тангенсу относительно числа 1. Для расчёта синуса можно вычислить тангенс по формуле tg α = 1 / ctg α и воспользоваться формулой во втором варианте. Также можно вывести прямую формулу по аналогии с тангенсом, которая будет выглядеть следующим образом.

Как находить синус по трём сторонам треугольника

Существует формула для нахождения длины неизвестной стороны любого треугольника, не только прямоугольного, по двум известным сторонам с использованием тригонометрической функции косинуса противолежащего угла. Выглядит она так.

Ну, а синус можно далее рассчитать по косинусу согласно формулам выше.

Как найти синус?




Изучение геометрии помогает развивать мышление. Этот предмет обязательно входит в школьную подготовку. В жизнедеятельности знание этого предмета может пригодиться - например, при планировке квартиры.

Из истории

В рамках курса геометрии изучается также тригонометрия, которая исследует тригонометрические функции. В тригонометрии мы изучаем синусы, косинусы, тангенсы и котангенсы угла.

Но на данный момент начнем с самого простого - синуса. Давайте рассмотрим более детально самое первое понятие - синус угла в геометрии. Что такое синус и как его найти?

Понятие «синус угла» и синусоиды

Синус угла - это соотношение значений противоположного катета и гипотенузы прямоугольного треугольника. Это прямая тригонометрическая функция, которая на письме обозначается как «sin (x)», где (х) - угол треугольника.

На графике синус угла обозначается синусоидой со своими особенностями. Синусоида выглядит как непрерывная волнообразная линия, которая лежит в определенных рамках на плоскости координат. Функция нечетная, поэтому симметрична относительно 0 на плоскости координат (выходит из начала отсчета координат).

Область определения этой функции лежит в диапазоне от -1 до +1 на декартовой системе координат. Период функции синус угла составляет 2 Пи. Это означает, что каждые 2 Пи рисунок повторяется, и синусоида проходит полный цикл.

Уравнение синусоиды

  • sin х = a / c
  • где а - противолежащий к углу треугольника катет
  • с - гипотенуза прямоугольного треугольника

Свойства синуса угла

  1. sin (x) = - sin (x). Эта особенность демонстрирует, что функция симметрична, и если отложить на системе координат в обе стороны значения х и (-х), то ординаты этих точек будут противоположными. Они будут находиться на равном расстоянии друг от друга.
  2. Еще одной особенностью этой функции является то, что график функции возрастает на отрезке [- П/2 + 2 Пn]; [П/2 + 2Пn], где n - любое целое число. Убывание графика синуса угла будет наблюдаться на отрезке: [ П/2 + 2 Пn]; [ 3П/2 + 2Пn].
  3. sin (x) > 0, когда х лежит в диапазоне (2Пn, П + 2Пn)
  4. (x) < 0, когда х находится в диапазоне (-П+2Пn, 2Пn)

Значения синусов угла определяются по специальным таблицам. Созданы такие таблицы для облегчения процесса подсчета сложных формул и уравнений. Она легка в использовании и содержит значения не только функции sin (x), но также и значения других функций.

Более того, таблица стандартных значений этих функций включена к обязательному изучению на память, как таблица умножения. Особенно это актуально для классов с физико-математическим уклоном. В таблице можно увидеть значения основных используемых в тригонометрии углов: 0, 15, 30, 45, 60, 75, 90, 120, 135, 150, 180, 270 и 360 градусов.

Также существует таблица, определяющая значения тригонометрических функций нестандартных углов. Пользуясь разными таблицами, можно без труда вычислить синус, косинус, тангенс и котангенс некоторых углов.

С тригонометрическими функциями составляются уравнения. Решать эти уравнения легко, если знать простые тригонометрические тождества и приведения функций, например, такие, как sin (П/2 + х) = cos (x) и другие. Для таких приведений также составлена отдельная таблица.

Как найти синус угла

Когда стоит задача найти синус угла, а по условию у нас есть только косинус, тангенс, или котангенс угла, мы легко можем вычислить нужное с помощью тригонометрических тождеств.

  • sin 2 x + cos 2 x = 1

Исходя из этого уравнения, мы можем найти как синус, так и косинус, в зависимости от того, какое значение неизвестно. У нас получится тригонометрическое уравнение с одним неизвестным:

  • sin 2 x = 1 - cos 2 x
  • sin x = ± √ 1 - cos 2 x
  • ctg 2 x + 1 = 1 / sin 2 x

Из этого уравнения можно найти значение синуса, зная значение котангенса угла. Для упрощения замените sin 2 x = у, и тогда у вас получится простое уравнение. Например, значение котангенса равно 1, тогда:

  • 1 + 1 = 1/у
  • 2 = 1 / у
  • 2у = 1
  • у = 1/2

Теперь выполняем обратную замену игрека:

  • sin 2 x = ½
  • sin x = 1 / √2

Поскольку мы взяли значение котангенса для стандартного угла (45 0), полученные значения можно проверить по таблице .

Если у вас дано значение тангенса, а нужно найти синус, поможет еще одно тригонометрическое тождество:

  • tg x * ctg x = 1

Из этого следует, что:

  • ctg x = 1 / tg x

Для того чтобы найти синус нестандартного угла, например, 240 0 , необходимо воспользоваться формулами приведения углов. Мы знаем, что π у нас соответствует 180 0 . Таким образом, мы выразим наше равенство с помощью стандартных углов путем разложения.

  • 240 0 = 180 0 + 60 0

Нам необходимо найти следующее: sin (180 0 + 60 0). В тригонометрии есть формулы приведения, которые в данном случае пригодятся. Это формула:

  • sin (π + х) = - sin (х)

Таким образом, синус угла 240 градусов равен:

  • sin (180 0 + 60 0) = - sin (60 0) = - √3/2

В нашем случае, х = 60, а П, соответственно, 180 градусам. Значение (-√3/2) мы нашли по таблице значений функций стандартных углов.

Таким образом можно разложить нестандартные углы, например: 210 = 180 + 30.

 

 

Это интересно: