→ Как построить параболу? Что такое парабола? Как решаются квадратные уравнения? Определение значений коэффициентов квадратичной функции по графику Используя график функции y ax2 bx c

Как построить параболу? Что такое парабола? Как решаются квадратные уравнения? Определение значений коэффициентов квадратичной функции по графику Используя график функции y ax2 bx c

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с ) нулю равняться могут.

Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

Самая простая зависимость для коэффициента а . Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, - то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x 2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

y = - 0,5x2 - 3x + 1

В данном случае а = - 0,5

Влияние коэффициента с тоже достаточно легко проследить. Представим, что мы хотим найти значение функции в точке х = 0. Подставим ноль в формулу:

y = a 0 2 + b 0 + c = c . Получается, что у = с . То есть с - это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с < 0.

с > 0:

y = x 2 + 4x + 3

с < 0

y = x 2 + 4x - 3

Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

y = x 2 + 4x


Сложнее с параметром b . Точка, по которой мы будем его находить, зависит не только от b но и от а . Это вершина параболы. Ее абсцисса (координата по оси х ) находится по формуле х в = - b/(2а) . Таким образом, b = - 2ах в . То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (х в > 0) или левее (х в < 0) она лежит.

Однако это не все. Надо еще обратить внимание на знак коэффициента а . То есть посмотреть, куда направлены ветви параболы. И только после этого по формуле b = - 2ах в определить знак b .

Рассмотрим пример:

Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с < 0, вершина параболы лежит правее нуля. Следовательно, х в > 0. Значит b = - 2ах в = -++ = -. b < 0. Окончательно имеем: а > 0, b < 0, с < 0.

Определение значений коэффициентов квадратичной функции по графику.

Методическая разработка Сагнаевой А.М.

МБОУ СОШ№44 г. Сургут, ХМАО-Югра .


Ι. Нахождение коэффициента а

  • по графику параболы определяем координаты вершины (m,n)

2. по графику параболы определяем координаты любой точки А 1 1 )

3. подставляем эти значения в формулу квадратичной функции, заданной в другом виде:

у=a(х-m)2+n

4. решаем полученное уравнение.

А(х 1 1 )

парабола


ΙΙ. Нахождение коэффициента b

1. Сначала находим значение коэффициента a

2. В формулу для абсциссы параболы m= -b/2a подставляем значения m и a

3. Вычисляем значение коэффициента b .

А(х 1 1 )

парабола


ΙΙΙ. Нахождение коэффициента c

1. Находим ординату точки пересечения графика параболы с осью Оу, это значение равно коэффициенту с , т.е. точка (0;с) -точка пересечения графика параболы с осью Оу.

2. Если по графику невозможно найти точку пересечения параболы с осью Оу, то находим коэффициенты a,b

(см. шаги Ι, ΙΙ)

3. Подставляем найденные значения a, b ,А(х 1; у 1 ) в уравнение

у=ax 2 +bx+c и находим с.

А(х 1 1 )

парабола



Задачи


подсказка


Ιх 2 Ι , а х 1 0, т.к. a Ордината точки пересечения параболы с осью ОY – коэффициент с Ответ: 5 с х 1 х 2 " width="640"
  • Ветви параболы направлены вниз,
  • Корни имеют разные знаки,Ι х 1 ΙΙх 2 Ι , а х 1 0, т.к. a
  • Ордината точки пересечения параболы с осью ОY – коэффициент с

х 1

х 2


П Подсказка


0 x 1 +x 2 = - b/a 0. a 0. Ответ: 5 " width="640"

1.Ветви параболы направлены вниз, значит а

  • x 1 +x 2 = - b/a 0. a 0.

0 , т.к. ветви параболы направлены вверх; 2. с=у(0)3. Вершина параболы имеет положительную абсциссу: при этом а 0, следовательно, b4. D0, т.к. парабола пересекает ось ОХ в двух различных точках. " width="640"

На рисунке приведен график функции у=ax 2 +bx+c. Укажите знаки коэффициентов a,b,c и дискриминанта D.

Решение:

1. а0 , т.к. ветви параболы направлены вверх;

3. Вершина параболы имеет положительную абсциссу:

при этом а 0, следовательно, b

4. D0, т.к. парабола пересекает ось ОХ в двух различных точках.


На рисунке изображена парабола

Укажите значения k и t .


Найдите координаты вершины параболы и напишите функцию, график которой изображен на рисунке.


Найдите, где - абсциссы точек пересечения

параболы и горизонтальной прямой (см. рис.).

Конспект урока по алгебре для 8 класса средней общеобразовательной школы

Тема урока : Функция


Цель урока:

· Образовательная: определить понятие квадратичной функции вида (сравнить графики функций и ), показать формулу нахождения координат вершины параболы (научить применять данную формулу на практике); сформировать умение определения свойств квадратичной функции по графику (нахождение оси симметрии, координат вершины параболы, координат точек пересечения графика с осями координат).

· Развивающая : развитие математической речи, умения правильно, последовательно и рационально излагать свои мысли; развитие навыка правильной записи математического текста при помощи символов и обозначений; развитие аналитического мышления; развитие познавательной деятельности учащихся через умение анализировать, систематизировать и обобщать материал.

· Воспитательная : воспитание самостоятельности, умения выслушать других, формирование аккуратности и внимания в письменной математической речи.

Тип урока : изучение нового материала.

Методы обучения:

обобщенно-репродуктивный, индуктивно-эвристический.

Требования к знаниям и умениям учащихся

знать, что такое квадратичная функция вида , формулу нахождения координат вершины параболы; уметь находить координаты вершины параболы, координаты точек пересечения графика функции с осями координат, по графику функции определять свойства квадратичной функции.

Оборудование :


План урока

I. Организационный момент (1-2 мин)

II. Актуализация знаний (10 мин)

III. Изложение нового материала (15 мин)

IV. Закрепление нового материала (12 мин)

V. Подведение итогов (3 мин)

VI. Задание на дом (2 мин)


Ход урока

I. Организационный момент

Приветствие, проверка отсутствующих, сбор тетрадей.

II. Актуализация знаний

Учитель : На сегодняшнем уроке мы изучим новую тему: "Функция ". Но для начала повторим ранее изученный материал.

Фронтальный опрос:

1) Что называется квадратичной функцией? (Функция , где заданные действительные числа, , действительная переменная, называется квадратичной функцией.)

2) Что является графиком квадратичной функции? (Графиком квадратичной функции является парабола.)

3) Что такое нули квадратичной функции? (Нули квадратичной функции – значения , при которых она обращается в нуль.)

4) Перечислите свойства функции . (Значения функции положительны при и равно нулю при ; график функции симметричен относительно ос ординат; при функция возрастает, при - убывает.)

5) Перечислите свойства функции . (Если , то функция принимает положительные значения при , если , то функция принимает отрицательные значения при , значение функции равно 0 только; парабола симметрична относительно оси ординат; если , то функция возрастает при и убывает при , если , то функция возрастает при , убывает – при .)


III. Изложение нового материала

Учитель : Приступим к изучению нового материала. Откройте тетради, запишите число и тему урока. Обратите внимание на доску.

Запись на доске : Число.

Функция .

Учитель : На доске вы видите два графика функций. Первый график , а второй . Давайте попробуем сравнить их.

Свойства функции вы знаете. На их основании, и сравнивая наши графики, можно выделить свойства функции .

Итак, как вы думаете, от чего будет зависеть направление ветвей параболы ?

Ученики: Направление ветвей обеих парабол будет зависеть от коэффициента .

Учитель: Совершенно верно. Так же можно заметить, что у обеих парабол есть ось симметрии. У первого графика функции, что является осью симметрии?

Ученики: У параболы вида осью симметрии является ось ординат.

Учитель: Верно. А что является осью симметрии параболы


Ученики: Осью симметрии параболы является линия, которая проходит через вершину параболы, параллельно оси ординат.

Учитель : Правильно. Итак, осью симметрии графика функции будем называть прямую, проходящую через вершину параболы, параллельную оси ординат.

А вершина параболы – это точка с координатами . Они определяются по формуле:

Запишите формулу в тетрадь и обведите в рамочку.

Запись на доске и в тетрадях

Координаты вершины параболы.

Учитель : Теперь, чтобы было более понятно, рассмотрим пример.

Пример 1 : Найдите координаты вершины параболы .

Решение: По формуле


Учитель : Как мы уже отметили, ось симметрии проходит через вершину параболы. Посмотрите на доску. Начертите этот рисунок в тетради.

Запись на доске и в тетрадях:

Учитель: На чертеже: - уравнение оси симметрии параболы с вершиной в точке , где абсцисса вершины параболы.

Рассмотрим пример.

Пример 2: По графику функции определите уравнение оси симметрии параболы.


Уравнение оси симметрии имеет вид: , значит, уравнение оси симметрии данной параболы .

Ответ: - уравнение оси симметрии.

IV.Закрепление нового материала

Учитель : На доске записаны задания, которые необходимо решить в классе.

Запись на доске : № 609(3), 612(1), 613(3)

Учитель: Но сначала решим пример не из учебника. Решать будем у доски.

Пример 1: Найти координаты вершины параболы

Решение: По формуле

Ответ: координаты вершины параболы.

Пример 2: Найти координаты точек пересечения параболы с осями координат.

Решение: 1) С осью :


Т.е.

По теореме Виета:

Точки пересечения с осью абсцисс (1;0) и (2;0).

2) С осью :

Точка пересечения с осью ординат (0;2).

Ответ: (1;0), (2;0), (0;2) – координаты точек пересечения с осями координат.

№ 609(3). Найти координаты вершины параболы

Рассмотрим выражение вида ах 2 +вх+с, где а, в, с - действительные числа, а отлично от нуля. Это математическое выражение известно как квадратный трехчлен.

Напомним, что ах 2 - это старший член этого квадратного трехчлена, а - его старший коэффициент.

Но не всегда у квадратного трехчлена присутствуют все три слагаемые. Возьмем для примера выражение 3х 2 + 2х, где а=3, в=2, с=0.

Перейдем к квадратичной функции у=ах 2 +вх+с, где а, в, с - любые произвольные числа. Эта функция является квадратичной, так как содержит член второй степени, то есть х в квадрате.

Довольно легко построить график квадратичной функции, например, можно воспользоваться методом выделения полного квадрата.

Рассмотрим пример построения графика функции у равно -3х 2 - 6х + 1.

Для этого первое, что вспомним, схему выделения полного квадрата в трехчлене -3х 2 - 6х + 1.

Вынесем -3 у первых двух слагаемых за скобки. Имеем -3 умножить на сумму х квадрат плюс 2х и прибавить 1. Добавив и отняв единицу в скобках, получаем формулу квадрата суммы, которую можно свернуть. Получим -3 умножить на сумму (х+1) в квадрате минус 1 прибавить 1. Раскрывая скобки и приводя подобные слагаемые, выходит выражение: -3 умноженное на квадрат суммы (х+1) прибавить 4.

Построим график полученной функции, перейдя к вспомогательной системе координат с началом в точке с координатами (-1; 4).

На рисунке из видео эта система обозначена пунктирными линиями. Привяжем функцию у равно -3х 2 к построенной системе координат. Для удобства возьмем контрольные точки. Например, (0;0), (1;-3), (-1;-3), (2;-12), (-2;-12). При этом отложим их в построенной системе координат. Полученная при построении парабола является необходимым нам графиком. На рисунке это красная парабола.

Применяя метод выделения полного квадрата, мы имеем квадратичную функцию вида: у = а*(х+1) 2 + m.

График параболы у = ах 2 + bx + c легко получить из параболы у=ах 2 параллельным переносом. Это подтверждено теоремой, которую можно доказать, выделив полный квадрат двучлена. Выражение ах 2 + bx + c после последовательных преобразований превращается в выражение вида: а*(х+l) 2 + m. Начертим график. Выполним параллельное перемещение параболы у = ах 2 , совмещая вершину с точкой с координатами (-l;m). Важно то, что х= -l, а значит -b/2а. Значит эта прямая является осью параболы ах 2 + bx + c, ее вершина находится в точке с абсциссой х нулевое равно минус в, деленное на 2а, а ордината вычисляется по громоздкой формуле 4ас - b 2 /. Но эту формулу запоминать не обязательно. Так как, подставив значение абсциссы в функцию, получим ординату.

Для определения уравнения оси, направления ее ветвей и координат вершины параболы, рассмотрим следующий пример.

Возьмем функцию у = -3х 2 - 6х + 1. Составив уравнение оси параболы, имеем, что х=-1. А это значение является координатой х вершины параболы. Осталось найти только ординату. Подставив значение -1 в функцию, получим 4. Вершина параболы находится в точке (-1; 4).

График функции у = -3х 2 - 6х + 1 получен при параллельном переносе графика функции у = -3х 2 , значит, и ведет себя аналогично. Старший коэффициент отрицателен, поэтому ветви направлены вниз.

Мы видим, что для любой функции вида y = ах 2 + bx + c, самым легким является последний вопрос, то есть направление веток параболы. Если коэффициент а положительный, то ветви - вверх, а если отрицательный, то - вниз.

Следующим по сложности идет первый вопрос, потому что требует дополнительных вычислений.

И самый сложный второй, так как, кроме вычислений, еще необходимы знания формул, по которым находятся х нулевое и у нулевое.

Построим график функции у = 2х 2 - х + 1.

Определяем сразу - графиком является парабола, ветви направлены вверх, так как старший коэффициент равен 2, а это положительное число. По формуле находим абсциссу х нулевое, она равна 1,5. Для нахождения ординаты вспомним, что у нулевое равно функции от 1,5, при вычислении получим -3,5.

Вершина - (1,5;-3,5). Ось - х=1,5. Возьмем точки х=0 и х=3. у=1. Отметим данные точки. По трем известным точкам строим искомый график.

Для построения графика функции ах 2 + bx + c необходимо:

Найти координаты вершины параболы и отметить их на рисунке, потом провести ось параболы;

На оси ох взять две симметричные, относительно оси, параболы точки, найти значение функции в этих точках и отметить их на координатной плоскости;

Через три точки построить параболу, при необходимости можно взять еще несколько точек и строить график по ним.

В следующем примере мы научимся находить наибольшее и наименьшее значения функции -2х 2 + 8х - 5 на отрезке .

По алгоритму: а=-2, в=8, значит х нулевое равно 2, а у нулевое - 3, (2;3) - вершина параболы, а х=2 является осью.

Возьмем значения х=0 и х=4 и найдем ординаты этих точек. Это -5. Строим параболу и определяем, что наименьшее значение функции -5 при х=0, а наибольшее 3, при х=2.

Методическая разработка урока алгебры в 9 классе.

Плохой учитель преподносит истину, хороший учит её добывать.

А.Дистервег

Учитель : Нетикова Маргарита Анатольевна, учитель математики ГБОУ школа №471 Выборгского района Санкт- Петербурга.

Тема урока: «График функции y = ax 2 »

Тип урока: урок усвоения новых знаний.

Цель: научить учащихся строить график функцииy = ax 2 .

Задачи:

Обучающие: сформировать умение строить параболу y = ax 2 и установить закономерность между графиком функции y = ax 2

и коэффициентом а.

Развивающие: развитие познавательных умений, аналитического и сравнительного мышления, математической грамотности, способности обобщать и делать выводы.

Воспитывающие: воспитание интереса к предмету, аккуратности, ответственности, требовательности к себе и другим.

Планируемые результаты:

Предметные: уметь по формуле определять направление ветвей параболы и строить её с помощью таблицы.

Личностные: уметь отстаивать свою точку зрения и работать в парах, в коллективе.

Метапредметные: уметь планировать и оценивать процесс и результат своей деятельности, обрабатывать информацию.

Педагогические технологии: элементы проблемного и опережающего обучения.

Оборудование: интерактивная доска, компьютер, раздаточные материалы.

1.Формула корней квадратного уравнения и разложение квадратного трёхчлена на множители.

2.Сокращение алгебраических дробей.

3.Свойства и график функции y = ax 2 , зависимость направления ветвей параболы, её «растяжения» и «сжатия» вдоль оси ординат от коэффициента a .

Структура урока.

1.Организационная часть.

2.Актуализация знаний:

Проверка домашнего задания

Устная работа по готовым чертежам

3.Самостоятельная работа

4.Объяснение нового материала

Подготовка к изучению нового материала (создание проблемной ситуации)

Первичное усвоение новых знаний

5.Закрепление

Применение знаний и умений в новой ситуации.

6.Подведение итогов урока.

7.Домашнее задание.

8.Рефлексия урока.

Технологическая карта урока алгебры в 9 классе по теме: «График функции y = ax 2 »


Этапы урока

Задачи этапа

Деятельность учителя

Деятельность учащихся

УУД

1.Организационная часть

1 минута


Создание рабочего настроения в начале урока

Здоровается с учениками,

проверяет их подготовку к уроку, отмечает отсутствующих, записывает на доске дату.


Готовятся к работе на уроке, приветствуют учителя

Регулятивные:

организация учебной деятельности.


2.Актуализация знаний

4 минуты


Проверить выполнение домашнего задания, повторить и обобщить изученный на прошлых уроках материал и создать условия для успешного выполнения самостоятельной работы.

Собирает тетради у шести учеников (выборочно по два с каждого ряда) для проверки домашнего задания на оценку (приложение 1), затем работает с классом на интерактивной доске

(приложение 2) .


Шесть учащихся сдают на проверку тетради с домашним заданием, затем отвечают на вопросы фронтального опроса (приложение 2) .

Познавательные:

приведение знаний в систему.

Коммуникативные:

умение прислушиваться к мнению окружающих.

Регулятивные:

оценивание результатов своей деятельности.

Личностные:

оценивание уровня усвоения материала.


3.Самостоятельная работа

10 минут


Проверить умение раскладывать на множители квадратный трёхчлен, сокращать алгебраические дроби и описывать некоторые свойства функций по её графику.

Раздаёт учащимся карточки с индивидуальным дифференцированным заданием (приложение 3) .

и листочки для решения.


Выполняют самостоятельную работу, самостоятельно выбирая уровень сложности упражнений по баллам.

Познавательные:

Личностные:

оценивание уровня усвоения материала и своих возможностей.


4.Объяснение нового материала

Подготовка к изучению нового материала

Первичное усвоение новых знаний


Создание благоприятной обстановки для выхода из проблемной ситуации,

восприятия и осмысления нового материала,

самостоятельного

прихода к правильному выводу


Итак, вы умеете строить график функции y = x 2 (графики заранее построены на трёх досках). Назовите основные свойства этой функции:

3. Координаты вершины

5. Промежутки монотонности

Чему в данном случае равен коэффициент при x 2 ?

На примере квадратного трёхчлена вы видели, что это совершенно не обязательно. Каким он может быть по знаку?

Приведите примеры.

Как будут выглядеть параболы с другими коэффициентами, вам предстоит узнать самим.

Лучший способ изучить

что-либо–это открыть самому.

Д.Пойа

Делимся на три команды (по рядам), выбираем капитанов, которые выходят к доске. Задание для команд написано на трёх досках, соревнование начинается!

В одной системе координат построить графики функций

1 команда:

а)y=x 2 б)y= 2x 2 в)y= x 2

2 команда:

а)y= - x 2 б)y=-2x 2 в)y= - x 2

3 команда:

а)y=x 2 б)y=4x 2 в)y=-x 2

Задание выполнено!

(приложение 4) .

Найдите функции, обладающие одинаковыми свойствами.

Капитаны советуются со своими командами.

От чего это зависит?

А чем же эти параболы всё-таки различаются и почему?

От чего зависит «толщина» параболы?

От чего зависит направление ветвей параболы?

Будем условно называть график а) «исходным». Представьте себе резинку: если её растягивать, она становится тоньше. Значит, график б) получен растяжением исходного графика вдоль оси ординат.

Как получен график в)?

Значит, при x 2 может стоять любой коэффициент, который влияет на конфигурацию параболы.

Вот и тема нашего урока звучит так:

«График функции y = ax 2 »


1. R

4. Ветви вверх

5. Убывает на (-

Возрастает на }

 

 

Это интересно: