→ Метод симпсона плюсы и минусы. Старт в науке. Правило Рунге практической оценки погрешности

Метод симпсона плюсы и минусы. Старт в науке. Правило Рунге практической оценки погрешности

В этом методе предлагается подынтегральную функцию на частичном отрезке аппроксимировать параболой, проходящей через точки
(x j , f (x j )), где j = i -1; i -0.5; i , то есть подынтегральную функцию аппроксимируем интерполяционным многочленом Лагранжа второй степени:

Проведя интегрирование, получим:

Это и есть формула Симпсона или формула парабол. На отрезке
[a, b ] формула Симпсона примет вид

Графическое представление метода Симпсона показано на рис. 2.4.

Рис. 10.4. Метод Симпсона

Избавимся в выражении (2.16) от дробных индексов, переобозначив переменные:

Тогда формула Симпсона примет вид

Погрешность формулы (2.18) оценивается следующим выражением:

где h·n = b - a , . Таким образом, погрешность формулы Симпсона пропорциональна O (h 4 ).

Замечание. Следует отметить, что в формуле Симпсона отрезок интегрирования обязательно разбивается на четное число интервалов.

10.5. Вычисление определенных интегралов методами
Монте–Карло

Рассматриваемые ранее методы называются детерминированными , то есть лишенными элемента случайности.

Методы Монте–Карло (ММК) – это численные методы решения математических задач с помощью моделирования случайных величин. ММК позволяют успешно решать математические задачи, обусловленные вероятностными процессами. Более того, при решении задач, не связанных с какими-либо вероятностями, можно искусственно придумать вероятностную модель (и даже не одну), позволяющую решать эти задачи. Рассмотрим вычисление определенного интеграла

При вычислении этого интеграла по формуле прямоугольников интервал [a, b ] разбиваем на N одинаковых интервалов, в серединах которых вычислялись значения подынтегральной функции. Вычисляя значения функции в случайных узлах, можно получить более точный результат:

Здесь γ i - случайное число, равномерно распределенное на интервале
. Погрешность вычисления интеграла ММК ~ , что значительно больше, чем у ранее изученных детерминированных методов.

На рис. 2.5 представлена графическая реализация метода Монте-Карло вычисления однократного интеграла со случайными узлами (2.21) и (2.22).


(2.23)

Рис. 10.6. Интегрирование методом Монте-Карло (2-й случай)

Как видно на рис. 2.6, интегральная кривая лежит в единичном квадрате, и если мы сумеем получать пары случайных чисел, равномерно распределенных на интервале , то полученные значения (γ 1, γ 2) можно интерпретировать как координаты точки в единичном квадрате. Тогда, если этих пар чисел получено достаточно много, можно приблизительно считать, что
. Здесь S – число пар точек, попавших под кривую, а N – общее число пар чисел.

Пример 2.1. Вычислить следующий интеграл:

Поставленная задача была решена различными методами. Полученные результаты сведены в табл. 2.1.

Таблица 2.1

Замечание. Выбор табличного интеграла позволил нам сравнить погрешность каждого метода и выяснить влияние числа разбиений на точность вычислений.

11 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ
И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ

Разобьем отрезок интегрирования [а , b ] на четное число n равных частей с шагом h . На каждом отрезке [х 0, х 2], [х 2, х 4],..., [x i-1, x i+1],..., [x n-2, x n] подынтегральную функцию f (х ) заменим интерполяционным многочленом второй степени:

Коэффициенты этих квадратных трехчленов можно найти из условий равенства многочлена в точках соответствующим табличным данным . В качестве можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки :

Сумму элементарных площадей и (рис. 3.3) можно вычислить с помощью определенного интеграла. Учитывая равенства получаем

-

Рис. 3.3. Иллюстрация к методу Симпсона

Проведя такие вычисления для каждого элементарного отрезка , просуммируем полученные выражения:

Данное выражение для S принимается в качестве значения определенного интеграла:

(3.35)

Полученное соотношение называется формулой Симпсона или формулой парабол .

Эту формулу можно получить и другими способами, например двукратным применением метода трапеций при разбиениях отрезка [а , b ] на части с шагами h и 2h или комбинированием формул прямоугольников и трапеций (см. разд. 3.2.6).

Иногда формулу Симпсона записывают с применением полуцелых индексов. В этом случае число отрезков разбиения п произвольно (не обязательно четно), и формула Симпсона имеет вид

(3.36)

Легко видеть, что формула (3.36) совпадет с (3.35), если формулу (3.35) применить для числа отрезков разбиения 2n и шага h /2.

Пример . Вычислить по методу Симпсона интеграл

Значения функции при n = 10, h = 0.1 приведены в табл. 3.3. Применяя формулу (3.35), находим

Результат численного интегрирования с использованием метода Симпсона оказался совпадающим с точным значением (шесть значащих цифр).

Один из возможных алгоритмов вычисления определенного интеграла по методу Симпсона показан на рис. 3.4. В качестве исходных данных задаются границы отрезка интегрирования [а , b ],погрешность ε, а также формула для вычисления значений подынтегральной функции у = f (x ) .

Рис. 3.4. Алгоритм метода Симпсона

Первоначально отрезок разбивается на две части с шагом h =(b - a)/2. Вычисляется значение интеграла I 1. Потом число шагов удваивается, вычисляется значение I 2 с шагом h /2. Условие окончание счета принимается в виде . Если это условие не выполнено, происходит новое деление шага пополам и т.д.

Отметим, что представленный на рис. 3.4 алгоритм не является оптимальным: при вычислении каждого приближения I 2 не используются значения функции f (x ), уже найденные на предыдущем этапе. Более экономичные алгоритмы будут рассмотрены в разд. 3.2.7.

Формула

Формулой Симпсона называется интеграл от интерполяционного многочлена второй степени на отрезке :

где , и - значения функции в соответствующих точках (на концах отрезка и в его середине).

Погрешность

При условии, что у функции на отрезке существует четвёртая производная, погрешность , согласно найденной Джузеппе Пеано формуле равна:

В связи с тем, что значение зачастую неизвестно, для оценки погрешности используется следующее неравенство:

Представление в виде метода Рунге-Кутты

Формулу Симпсона можно представить в виде таблицы метода Рунге-Кутты следующим образом:

Составная формула (формула Котеса)

Для более точного вычисления интеграла, интервал разбивают на отрезков одинаковой длины и применяют формулу Симпсона на каждом из них. Значение исходного интеграла является суммой результатов интегрирования на всех отрезках.

где - величина шага, а - узлы интегрирования, границы элементарных отрезков, на которых применяется формула Симпсона. Обычно для равномерной сетки данную формулу записывают в других обозначениях (отрезок разбит на узлов) в виде

Также формулу можно записать используя только известные значения функции, то есть значения в узлах:

где означает что индекс меняется от единицы с шагом, равным двум. Следует обратить внимание на удвоение коэффициента перед суммой. Это связано с тем, что в данном случае роль промежуточных узлов играют исходные узлы интегрирования.

Общая погрешность при интегрировании по отрезку с шагом (при этом, в частности, , ) определяется по формуле :

.

При невозможности оценить погрешность с помощью максимума четвёртой производной (например, на заданном отрезке она не существует, либо стремится к бесконечности), можно использовать более грубую оценку:

.

Примечания

Литература

  • Костомаров Д. П., Фаворский А. П. «Вводные лекции по численным методам»
  • Петров И. Б., Лобанов А. И. Лекции по вычислительной математике

Wikimedia Foundation . 2010 .

  • Western Union
  • Патагонский попугай

Смотреть что такое "Формула Симпсона" в других словарях:

    СИМПСОНА ФОРМУЛА - (формула парабол) формула для приближенного вычисления определенных интегралов (квадратурная формула), Названа по имени Т. Симпсона (1743) … Большой Энциклопедический словарь

    СИМПСОНА ФОРМУЛА - (формула парабол), формула для приближённого вычисления определ. интегралов (квадратурная формула), имеющая вид где А = (b а)/2n, fk = f(a + kh), k = 0, 1, 2, ..., 2n. Названа по имени Т. Симпсона (1743) …

    Симпсона формула - формула для приближённого вычисления определённых интегралов, имеющая вид: , где h = (b а)/2n; fi, = f (a + ih), i = 0, 1, 2,..., 2n. С. ф. называют иногда формулой парабол, т. к. вывод этой формулы основан на… … Большая советская энциклопедия

    Симпсона формула - формула парабол, формула для приближённого вычисления определённых интегралов (квадратурная формула), имеющая вид, где h = (b–a)/2n, fk = f(а + kh), k = 0, 1, 2, ..., 2n. Названа по имени Т. Симпсона (1743). * * * СИМПСОНА ФОРМУЛА СИМПСОНА… … Энциклопедический словарь

    Формула прямоугольников

    Формула трапеций - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    СИМПСОНА ФОРМУЛА - частный случай Ньютона Котеса квадратурной формулы, в к рой берутся три узла: Пусть промежуток [а, b]разбит на пчастичных промежутков , i=0, 1, 2, ..., n 1, длины h=(b а)/п, при этом n считается четным числом, и для вычисления интеграла … Математическая энциклопедия

    Симпсона формула - … Википедия

    Метод Симпсона - Формула Симпсона относится к приёмам численного интегрирования. Получила название в честь британского математика Томаса Симпсона (1710 1761). Рассмотрим отрезок . Пусть известны значения вещественной функции f(x) в точках a, (a+b)/2, b.… … Википедия

    КВАДРАТУРНАЯ ФОРМУЛА - формула, служа щая для приближённого вычисления определ. интегралов по значениям подынтегральной функции в конечном числе точек. Примеры К. ф. прямоугольников формула, трапеций формула, Симпсона формула … Естествознание. Энциклопедический словарь

Возникает задача о численном вычислении определенного интеграла, решаемая с помощью формул, носящих название квад­ратурных.

Напомним простейшие формулы численного интегрирования.

Вычислим приближенное численное значение . Интервал интегрирования [а, b] разобьем на п равных частей точками деле­ния
, называемыми узлами квадра­турной формулы. Пусть в узлах известны значения
:


Величина

называется интервалом интегрирования или шагом. Отметим, что в практике -вычислений число я выбирают небольшим, обычно оно не больше 10-20.На частичном интервале

подынтегральную функцию заменяют интерполяционным много­членом


который на рассматриваемом интервале приближенно представ­ляет функцию f (х).

а) Удержим в интерполяционном многочлене только один первый член, тогда


Полученная квадратная формула

называется формулой прямоугольников.

б) Удержим в интерполяционном многочлене два первых члена, тогда

(2)

Формула (2) называется формулой трапеций.

в) Интервал интегрирования
разобьем на четное число 2n равных частей, при этом шаг интегрирования h будет равен. На интервале
длиной 2h подынтегральную функцию заменим интерполяционным многочленом второй сте­пени, т. е. удержим в многочлене три первых члена:

Полученная квадратурная формула называется формулой Симп­сона

(3)

Формулы (1), (2) и (3) имеют простой геометрический смысл. В формуле прямоугольников подынтегральная функция f(х) на интервале
заменяется отрезком прямой у = ук, параллельной оси абсцисс, а в формуле трапеций - отрезком прямой
и вычисляется соответственно площадь прямо­угольника и прямолинейной трапеции, которые затем сумми­руются. В формуле Симпсона функция f(х) на интервале
длиной 2h заменяется квадратным трехчленом - параболой
вычисляется площадь криволинейной параболической трапеции, затем площади суммируются.

ЗАКЛЮЧЕНИЕ

В завершении работы, хочется отметить ряд особенностей применения рассмотренных выше методов. Каждый способ приближённого решения определённого интеграла имеет свои преимущества и недостатки, в зависимости от поставленной задачи следует использовать конкретные методы.

Метод замены переменных является одним из основных методов вычисления неопределенных интегралов. Даже в тех случаях, когда мы интегрируем каким-либо другим методом, нам часто приходится в промежуточных вычислениях прибегать к замене переменных. Успех интегрирования зависит в значительной степени от того, сумеем ли мы подобрать такую удачную замену переменных, которая упростила бы данный интеграл.

По существу говоря изучение методов интегрирования сводится к выяснению того, какую надо сделать замену переменной при том или ином виде подынтегрального выражения.

Таким образом, интегрирование всякой рациональной дроби сводится к интегрированию многочлена и нескольких простейших дробей.

Интеграл от любой рациональной функции может быть выражен через элементарные функции в конечном виде, а именно:

    через логарифмы- в случаях простейших дробей 1 типа;

    через рациональные функции- в случае простейших дробей 2 типа

    через логарифмы и арктангенсы- в случае простейших дробей 3 типа

    через рациональные функции и арктангенсы- в случае простейших дробей 4 типа. Универсальная тригонометрическая подстановка всегда рационализирует подынтегральную функцию, однако часто она приводит к очень громоздким рациональным дробям, у которых, в частности, практически невозможно найти корни знаменателя. Поэтому при возможности применяются частные подстановки, которые тоже рационализируют подынтегральную функцию и приводят к менее сложным дробям.

Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов.

Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов.

Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.

Как следует из теоремы, условие непрерывности функции яв­ляется достаточным условием интегрируемости функции. Но это не означает, что определенный интеграл существует только для непрерывных функций. Класс интегрируемых функций гораздо шире. Так, например, существует определенный интеграл от функ­ций, имеющих конечное число точек разрыва.

Вычис­ление определенного интеграла от непрерывной функции с по­мощью формулы Ньютона-Лейбница сводится к нахождению первообразной, которая всегда существует, но не всегда явля­ется элементарной функцией или функцией, для которой состав­лены таблицы, дающие возможность получить значение интеграла. В многочисленных приложениях интегрируемая функция зада­ется таблично и формула Ньютона - Лейбница непосредственно неприменима.

Если необходимо получить наиболее точный результат, идеально подходит метод Симпсона .

Из выше изученного можно сделать следующий вывод, что интеграл используется в таких науках как физика, геометрия, математика и других науках. При помощи интеграла вычисляют работу силы, находят координаты центр масс, путь пройденный материальной точкой. В геометрии используется для вычисления объема тела, нахождение длины дуги кривой и др.

Для построения формулы Симпсона предварительно рассмотрим такую задачу: вычислить площадь S криволинейной трапеции, ограниченной сверху графиком параболы y = Ax 2 + Bx + C, слева прямой х = - h, справа прямой x = h и снизу отрезком [-h; h]. Пусть парабола проходит через три точки (рис.8): D(-h; y 0) E(0; y 1) и F(h; y 2), причем х 2 - х 1 = х 1 - х 0 = h. Следовательно,

x 1 = x 0 + h = 0; x 2 = x 0 + 2h.

Тогда площадь S равна интегралу:

Выразим эту площадь через h, y 0 , y 1 и y 2 . Для этого вычислим коэффициенты параболы А, В, С. Из условия, что парабола проходит через точки D, E и F, имеем:

Решая эту систему, получаем: C = y 1 ; A =

Подставляя эти значения А и С в (3), получаем искомую площадь

Перейдем теперь к выводу формулы Симпсона для вычисления интеграла

Для этого отрезок интегрирования разобьем на 2n равных частей длиной

В точках деления (рис.4).а = х 0 , х 1 , х 2 , ...,х 2n-2 , x 2n-1 , x 2n = b,

Вчисляем значения подынтегральной функции f: y 0 , y 1 , y 2 , ...,y 2n-2 , y 2n-1 , y 2n , де y i = f(x i), x i = a + ih (i = 0, 1, 2,...,2n).

На отрезке подынтегральную функцию заменяем параболой, проходящей через точки (x 0 ; y 0), (x 1 ; y 1) и (x 2 ; y 2), и для вычисления приближенного значения интеграла от х 0 до х 2 воспользуемся формулой (4). Тогда (на рис. 4 заштрихованная площадь):

Аналогично находим:

................................................

Сложив полученные равенства, имеем:

Формула (5) называется обобщенной формулой Симпсона или формулой парабол , так как при ее выводе график подынтегральной функции на частичном отрезке длины 2h заменяется дугой параболы.

Задание на работу:

1. По указанию преподавателя или в соответствии с вариантом из Таблицы 4 заданий (см. Приложение) взять условия – подынтегральную функцию, пределы интегрирования.

2. Составить блок-схему программы и программу, которая должна:

Запросить точность вычисления определенного интеграла, нижний и верхний пределы интегрирования;

Вычислить заданный интеграл методами: для вариантов 1,4,7, 10… - правых, для вариантов 2,5,8,… - средних; для вариантов 2,5,8,… - левых прямоугольников. Вывести количество разбиений диапазона интегрирования, при котором достигнута заданная точность вычисления;

Вычислить заданный интеграл методом трапеций (для четных вариантов) и методом Симпсона (для нечетных вариантов).

Вывести количество разбиений диапазона интегрирования, при котором достигнута заданная точность вычисления;

Вывести значения контрольной функции для заданного значения аргумента и сравнить с вычисленными значениями интеграла. Сделать выводы.


Контрольные вопросы

1. Что такое определенный интеграл?

2. Почему наряду с аналитическими методами используются численные методы вычисления определенных интегралов.

3. В чем заключается сущность основных численных методов вычисления определенных интегралов.

4. Влияние количества разбиений на точность вычисления определенного интеграла численными методами.

5. Как вычислить интеграл любым методом с заданной точностью?

 

 

Это интересно: