→ Что значит sin. Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла. Переход от произведения к сумме

Что значит sin. Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла. Переход от произведения к сумме

Лекция: Синус, косинус, тангенс, котангенс произвольного угла

Синус, косинус произвольного угла


Чтобы понять, что такое тригонометрические функции, обратимся к окружности с единичным радиусом. Данная окружность имеет центр в начале координат на координатной плоскости. Для определения заданных функций будем использовать радиус-вектор ОР , который начинается в центре окружности, а точка Р является точкой окружности. Данный радиус-вектор образует угол альфа с осью ОХ . Так как окружность имеет радиус, равный единице, то ОР = R = 1 .

Если с точки Р опустить перпендикуляр на ось ОХ , то получим прямоугольный треугольник с гипотенузой, равной единице.


Если радиус-вектор двигается по часовой стрелке, то данное направление называется отрицательным , если же он двигается против движения часовой стрелки - положительным .


Синусом угла ОР , является ордината точки Р вектора на окружности.

То есть, для получения значения синуса данного угла альфа необходимо определиться с координатой У на плоскости.

Как данное значение было получено? Так как мы знаем, что синус произвольного угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе, получим, что

А так как R = 1 , то sin(α) = y 0 .


В единичной окружности значение ординаты не может быть меньше -1 и больше 1, значит,

Синус принимает положительное значение в первой и второй четверти единичной окружности, а в третьей и четвертой - отрицательное.

Косинусом угла данной окружности, образованного радиусом-вектором ОР , является абсцисса точки Р вектора на окружности.

То есть, для получения значения косинуса данного угла альфа необходимо определиться с координатой Х на плоскости.


Косинус произвольного угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе, получим, что


А так как R = 1 , то cos(α) = x 0 .

В единичной окружности значение абсциссы не может быть меньше -1 и больше 1, значит,

Косинус принимает положительное значение в первой и четвертой четверти единичной окружности, а во второй и в третьей - отрицательное.

Тангенсом произвольного угла считается отношение синуса к косинусу.

Если рассматривать прямоугольный треугольник, то это отношение противолежащего катета к прилежащему. Если же речь идет о единичной окружности, то это отношение ординаты к абсциссе.

Судя по данным отношениям, можно понять, что тангенс не может существовать, если значение абсциссы равно нулю, то есть при угле в 90 градусов. Все остальные значения тангенс принимать может.

Тангенс имеет положительное значение в первой и третьей четверти единичной окружности, а во второй и четвертой является отрицательным.

Что такое синус, косинус, тангенс, котангенс угла поможет понять прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона \(AC \) ); катеты – это две оставшиеся стороны \(AB \) и \(BC \) (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла \(BC \) , то катет \(AB \) – это прилежащий катет, а катет \(BC \) - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла – это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике:

\[ \sin \beta =\dfrac{BC}{AC} \]

Косинус угла – это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике:

\[ \cos \beta =\dfrac{AB}{AC} \]

Тангенс угла – это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике:

\[ tg\beta =\dfrac{BC}{AB} \]

Котангенс угла – это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике:

\[ ctg\beta =\dfrac{AB}{BC} \]

Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла \(\beta \) . По определению, из треугольника \(ABC \) : \(\cos \beta =\dfrac{AB}{AC}=\dfrac{4}{6}=\dfrac{2}{3} \) , но ведь мы можем вычислить косинус угла \(\beta \) и из треугольника \(AHI \) : \(\cos \beta =\dfrac{AH}{AI}=\dfrac{6}{9}=\dfrac{2}{3} \) . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника \(ABC \) , изображённого ниже на рисунке, найдём \(\sin \ \alpha ,\ \cos \ \alpha ,\ tg\ \alpha ,\ ctg\ \alpha \) .

\(\begin{array}{l}\sin \ \alpha =\dfrac{4}{5}=0,8\\\cos \ \alpha =\dfrac{3}{5}=0,6\\tg\ \alpha =\dfrac{4}{3}\\ctg\ \alpha =\dfrac{3}{4}=0,75\end{array} \)

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла \(\beta \) .

Ответы: \(\sin \ \beta =0,6;\ \cos \ \beta =0,8;\ tg\ \beta =0,75;\ ctg\ \beta =\dfrac{4}{3} \) .

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным \(1 \) . Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси \(x \) (в нашем примере, это радиус \(AB \) ).

Каждой точке окружности соответствуют два числа: координата по оси \(x \) и координата по оси \(y \) . А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник \(ACG \) . Он прямоугольный, так как \(CG \) является перпендикуляром к оси \(x \) .

Чему равен \(\cos \ \alpha \) из треугольника \(ACG \) ? Всё верно \(\cos \ \alpha =\dfrac{AG}{AC} \) . Кроме того, нам ведь известно, что \(AC \) – это радиус единичной окружности, а значит, \(AC=1 \) . Подставим это значение в нашу формулу для косинуса. Вот что получается:

\(\cos \ \alpha =\dfrac{AG}{AC}=\dfrac{AG}{1}=AG \) .

А чему равен \(\sin \ \alpha \) из треугольника \(ACG \) ? Ну конечно, \(\sin \alpha =\dfrac{CG}{AC} \) ! Подставим значение радиуса \(AC \) в эту формулу и получим:

\(\sin \alpha =\dfrac{CG}{AC}=\dfrac{CG}{1}=CG \)

Так, а можешь сказать, какие координаты имеет точка \(C \) , принадлежащая окружности? Ну что, никак? А если сообразить, что \(\cos \ \alpha \) и \(\sin \alpha \) - это просто числа? Какой координате соответствует \(\cos \alpha \) ? Ну, конечно, координате \(x \) ! А какой координате соответствует \(\sin \alpha \) ? Всё верно, координате \(y \) ! Таким образом, точка \(C(x;y)=C(\cos \alpha ;\sin \alpha) \) .

А чему тогда равны \(tg \alpha \) и \(ctg \alpha \) ? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что \(tg \alpha =\dfrac{\sin \alpha }{\cos \alpha }=\dfrac{y}{x} \) , а \(ctg \alpha =\dfrac{\cos \alpha }{\sin \alpha }=\dfrac{x}{y} \) .

А что, если угол будет больше ? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник \({{A}_{1}}{{C}_{1}}G \) : угол (как прилежащий к углу \(\beta \) ). Чему равно значение синуса, косинуса, тангенса и котангенса для угла \({{C}_{1}}{{A}_{1}}G=180{}^\circ -\beta \ \) ? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

\(\begin{array}{l}\sin \angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{C}_{1}}G}{{{A}_{1}}{{C}_{1}}}=\dfrac{{{C}_{1}}G}{1}={{C}_{1}}G=y;\\\cos \angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{A}_{1}}G}{{{A}_{1}}{{C}_{1}}}=\dfrac{{{A}_{1}}G}{1}={{A}_{1}}G=x;\\tg\angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{C}_{1}}G}{{{A}_{1}}G}=\dfrac{y}{x};\\ctg\angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{A}_{1}}G}{{{C}_{1}}G}=\dfrac{x}{y}\end{array} \)

Ну вот, как видишь, значение синуса угла всё так же соответствует координате \(y \) ; значение косинуса угла – координате \(x \) ; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора – вдоль положительного направления оси \(x \) . До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке – отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет \(360{}^\circ \) или \(2\pi \) . А можно повернуть радиус-вектор на \(390{}^\circ \) или на \(-1140{}^\circ \) ? Ну конечно, можно! В первом случае, \(390{}^\circ =360{}^\circ +30{}^\circ \) , таким образом, радиус-вектор совершит один полный оборот и остановится в положении \(30{}^\circ \) или \(\dfrac{\pi }{6} \) .

Во втором случае, \(-1140{}^\circ =-360{}^\circ \cdot 3-60{}^\circ \) , то есть радиус-вектор совершит три полных оборота и остановится в положении \(-60{}^\circ \) или \(-\dfrac{\pi }{3} \) .

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на \(360{}^\circ \cdot m \) или \(2\pi \cdot m \) (где \(m \) – любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол \(\beta =-60{}^\circ \) . Это же изображение соответствует углу \(-420{}^\circ ,-780{}^\circ ,\ 300{}^\circ ,660{}^\circ \) и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой \(\beta +360{}^\circ \cdot m \) или \(\beta +2\pi \cdot m \) (где \(m \) – любое целое число)

\(\begin{array}{l}-420{}^\circ =-60+360\cdot (-1);\\-780{}^\circ =-60+360\cdot (-2);\\300{}^\circ =-60+360\cdot 1;\\660{}^\circ =-60+360\cdot 2.\end{array} \)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

\(\begin{array}{l}\sin \ 90{}^\circ =?\\\cos \ 90{}^\circ =?\\\text{tg}\ 90{}^\circ =?\\\text{ctg}\ 90{}^\circ =?\\\sin \ 180{}^\circ =\sin \ \pi =?\\\cos \ 180{}^\circ =\cos \ \pi =?\\\text{tg}\ 180{}^\circ =\text{tg}\ \pi =?\\\text{ctg}\ 180{}^\circ =\text{ctg}\ \pi =?\\\sin \ 270{}^\circ =?\\\cos \ 270{}^\circ =?\\\text{tg}\ 270{}^\circ =?\\\text{ctg}\ 270{}^\circ =?\\\sin \ 360{}^\circ =?\\\cos \ 360{}^\circ =?\\\text{tg}\ 360{}^\circ =?\\\text{ctg}\ 360{}^\circ =?\\\sin \ 450{}^\circ =?\\\cos \ 450{}^\circ =?\\\text{tg}\ 450{}^\circ =?\\\text{ctg}\ 450{}^\circ =?\end{array} \)

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

\(\begin{array}{l}\sin \alpha =y;\\cos\alpha =x;\\tg\alpha =\dfrac{y}{x};\\ctg\alpha =\dfrac{x}{y}.\end{array} \)

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в \(90{}^\circ =\dfrac{\pi }{2} \) соответствует точка с координатами \(\left(0;1 \right) \) , следовательно:

\(\sin 90{}^\circ =y=1 \) ;

\(\cos 90{}^\circ =x=0 \) ;

\(\text{tg}\ 90{}^\circ =\dfrac{y}{x}=\dfrac{1}{0}\Rightarrow \text{tg}\ 90{}^\circ \) - не существует;

\(\text{ctg}\ 90{}^\circ =\dfrac{x}{y}=\dfrac{0}{1}=0 \) .

Дальше, придерживаясь той же логики, выясняем, что углам в \(180{}^\circ ,\ 270{}^\circ ,\ 360{}^\circ ,\ 450{}^\circ (=360{}^\circ +90{}^\circ)\ \) соответствуют точки с координатами \(\left(-1;0 \right),\text{ }\left(0;-1 \right),\text{ }\left(1;0 \right),\text{ }\left(0;1 \right) \) , соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

\(\displaystyle \sin \ 180{}^\circ =\sin \ \pi =0 \)

\(\displaystyle \cos \ 180{}^\circ =\cos \ \pi =-1 \)

\(\text{tg}\ 180{}^\circ =\text{tg}\ \pi =\dfrac{0}{-1}=0 \)

\(\text{ctg}\ 180{}^\circ =\text{ctg}\ \pi =\dfrac{-1}{0}\Rightarrow \text{ctg}\ \pi \) - не существует

\(\sin \ 270{}^\circ =-1 \)

\(\cos \ 270{}^\circ =0 \)

\(\text{tg}\ 270{}^\circ =\dfrac{-1}{0}\Rightarrow \text{tg}\ 270{}^\circ \) - не существует

\(\text{ctg}\ 270{}^\circ =\dfrac{0}{-1}=0 \)

\(\sin \ 360{}^\circ =0 \)

\(\cos \ 360{}^\circ =1 \)

\(\text{tg}\ 360{}^\circ =\dfrac{0}{1}=0 \)

\(\text{ctg}\ 360{}^\circ =\dfrac{1}{0}\Rightarrow \text{ctg}\ 2\pi \) - не существует

\(\sin \ 450{}^\circ =\sin \ \left(360{}^\circ +90{}^\circ \right)=\sin \ 90{}^\circ =1 \)

\(\cos \ 450{}^\circ =\cos \ \left(360{}^\circ +90{}^\circ \right)=\cos \ 90{}^\circ =0 \)

\(\text{tg}\ 450{}^\circ =\text{tg}\ \left(360{}^\circ +90{}^\circ \right)=\text{tg}\ 90{}^\circ =\dfrac{1}{0}\Rightarrow \text{tg}\ 450{}^\circ \) - не существует

\(\text{ctg}\ 450{}^\circ =\text{ctg}\left(360{}^\circ +90{}^\circ \right)=\text{ctg}\ 90{}^\circ =\dfrac{0}{1}=0 \) .

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

\(\left. \begin{array}{l}\sin \alpha =y;\\cos \alpha =x;\\tg \alpha =\dfrac{y}{x};\\ctg \alpha =\dfrac{x}{y}.\end{array} \right\}\ \text{Надо запомнить или уметь выводить!!!} \)

А вот значения тригонометрических функций углов в и \(30{}^\circ =\dfrac{\pi }{6},\ 45{}^\circ =\dfrac{\pi }{4} \) , приведённых ниже в таблице, необходимо запомнить:

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений:

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (\(30{}^\circ =\dfrac{\pi }{6},\ 45{}^\circ =\dfrac{\pi }{4},\ 60{}^\circ =\dfrac{\pi }{3} \) ), а также значение тангенса угла в \(30{}^\circ \) . Зная эти \(4 \) значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

\(\begin{array}{l}\sin 30{}^\circ =\cos \ 60{}^\circ =\dfrac{1}{2}\ \ \\\sin 45{}^\circ =\cos \ 45{}^\circ =\dfrac{\sqrt{2}}{2}\\\sin 60{}^\circ =\cos \ 30{}^\circ =\dfrac{\sqrt{3}}{2}\ \end{array} \)

\(\text{tg}\ 30{}^\circ \ =\dfrac{1}{\sqrt{3}} \) , зная это можно восстановить значения для \(\text{tg}\ 45{}^\circ , \text{tg}\ 60{}^\circ \) . Числитель «\(1 \) » будет соответствовать \(\text{tg}\ 45{}^\circ \ \) , а знаменатель «\(\sqrt{\text{3}} \) » соответствует \(\text{tg}\ 60{}^\circ \ \) . Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего \(4 \) значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота? Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки. Вот, к примеру, перед нами такая окружность:

Нам дано, что точка \(K({{x}_{0}};{{y}_{0}})=K(3;2) \) - центр окружности. Радиус окружности равен \(1,5 \) . Необходимо найти координаты точки \(P \) , полученной поворотом точки \(O \) на \(\delta \) градусов.

Как видно из рисунка, координате \(x \) точки \(P \) соответствует длина отрезка \(TP=UQ=UK+KQ \) . Длина отрезка \(UK \) соответствует координате \(x \) центра окружности, то есть равна \(3 \) . Длину отрезка \(KQ \) можно выразить, используя определение косинуса:

\(\cos \ \delta =\dfrac{KQ}{KP}=\dfrac{KQ}{r}\Rightarrow KQ=r\cdot \cos \ \delta \) .

Тогда имеем, что для точки \(P \) координата \(x={{x}_{0}}+r\cdot \cos \ \delta =3+1,5\cdot \cos \ \delta \) .

По той же логике находим значение координаты y для точки \(P \) . Таким образом,

\(y={{y}_{0}}+r\cdot \sin \ \delta =2+1,5\cdot \sin \delta \) .

Итак, в общем виде координаты точек определяются по формулам:

\(\begin{array}{l}x={{x}_{0}}+r\cdot \cos \ \delta \\y={{y}_{0}}+r\cdot \sin \ \delta \end{array} \) , где

\({{x}_{0}},{{y}_{0}} \) - координаты центра окружности,

\(r \) - радиус окружности,

\(\delta \) - угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

\(\begin{array}{l}x={{x}_{0}}+r\cdot \cos \ \delta =0+1\cdot \cos \ \delta =\cos \ \delta \\y={{y}_{0}}+r\cdot \sin \ \delta =0+1\cdot \sin \ \delta =\sin \ \delta \end{array} \)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Поскольку для радианной меры угла характерно нахождение величины угла через длину дуги, то можно графически изобразить связь радианной меры и градусной. Для этого изобразим окружность радиуса 1 на координатной плоскости таким образом, чтобы ее центр находился в начале координат. Положительные углы будем откладывать против часовой стрелки, а отрицательные - по часовой.

Градусную меру угла обозначим как обычно, а радианную – при помощи дуг, лежащих на окружности. P 0 – начало отсчета угла. Остальные – точки пересечения сторон угла с окружностью.

Определение: Окружность радиуса 1 с центром в начале координат называется единичной окружностью.

Кроме обозначения углов у данной окружности есть еще одна особенность: на ней можно изобразить единственной точкой данной окружности любое действительное число. Это можно сделать точно также, как на числовой прямой. Мы как будто сгибаем числовую прямую таким образом, чтобы она лежала на окружности.

P 0 – начало отсчета, точка числа 0. Положительные числа отмечают в положительном направлении (против часовой стрелки), а отрицательные – в отрицательном (по часовой стрелке). Отрезок равный α есть дуга P 0 P α .

Любое число можно изобразить точкой P α на окружности, причем эта точка для каждого числа единственна, но можно заметить, что множеству чисел α+2πn, где n-целое число, соответствует одна и та же точка P α .

Каждая точка имеет свои координаты, которые имеют специальные названия.

Определение: Косинусом числа α называется абсцисса точки, соответствующей числу α на единичной окружности.

Определение: Синусом числа α называется ордината точки, соответствующая числу α на единичной окружности.

Pα (cosα, sinα).

Из геометрии:

Косинус угла в прямоугольном треугольнике – отношение противолежащего угла к гипотенузе. В данном случае гипотенуза равна 1, то есть косинус угла измеряется длиной отрезка ОА.

Синус угла в прямоугольном треугольнике – отношение прилежащего катета к гипотенузе. То есть синус измеряется длиной отрезка ОВ.

Запишем определения тангенса и котангенса числа.

Где cos α≠0

Где sin α≠0

Задача нахождения значений синуса, косинуса, тангенса и котангенса произвольного числа путем применения некоторых формул сводится к нахождению значений sinα, cosα, tgα и ctgα, где 0≤α≤π/2.

Таблица основных значений тригонометрических функций

α π/6 π/4 π/3 π/2 π 2 π
30° 45° 60° 90° 180° 360°
sin α
cos α ½ -1
tg α -
ctg α - - -

Найти значение выражений.

Учителя считают, что каждый школьник должен уметь проводить расчёты, знать тригонометрические формулы, но далеко не каждый преподаватель объясняет, что такое синус и косинус. Каков их смысл, где они используются? Почему мы говорим про треугольники, а в учебнике нарисована окружность? Попробуем связать все факты воедино.

Школьный предмет

Изучение тригонометрии начинается обычно в 7-8 классе средней школы. В это время учащимся объясняют, что такое синус и косинус, предлагают решать геометрические задачи с применением этих функций. Позже появляются более сложные формулы и выражения, которые требуется алгебраическим способом преобразовывать (формулы двойного и половинного угла, степенные функции), проводится работа с тригонометрической окружностью.

Однако учителя далеко не всегда могут доходчиво объяснить смысл используемых понятий и применимость формул. Поэтому ученик зачастую не видит смысла в данном предмете, а заученная информация быстро забывается. Однако стоит один раз объяснить старшекласснику, например, связь между функцией и колебательным движением, и логическая связь запомнится на многие годы, а шутки на тему бесполезности предмета уйдут в прошлое.

Использование

Заглянем ради любопытства в различные разделы физики. Хотите определить дальность полёта снаряда? Или высчитываете силу трения между объектом и некой поверхностью? Раскачиваете маятник, следите за лучами, проходящими сквозь стекло, высчитываете индукцию? Практически в любой формуле фигурируют тригонометрические понятия. Так что такое синус и косинус?

Определения

Синус угла представляет собой отношение противолежащего катета к гипотенузе, косинус - прилежащего катета всё к той же гипотенузе. Здесь нет совершенно ничего сложного. Возможно, учеников обычно смущают значения, которые они видят в тригонометрической таблице, ведь там фигурируют квадратные корни. Да, получать из них десятичные дроби не очень удобно, но кто сказал, что все числа в математике должны быть ровными?

На самом деле в задачниках по тригонометрии можно найти забавную подсказку: большинство ответов здесь ровные и в худшем случае содержат корень из двух или из трёх. Вывод прост: если у вас в ответе получилась «многоэтажная» дробь, перепроверьте решение на предмет ошибок в расчётах или в рассуждениях. И вы их, скорее всего, найдете.

Что нужно запомнить

Как и в любой науке, в тригонометрии есть такие данные, которые необходимо выучить.

Во-первых, следует запомнить числовые значения для синусов, косинусов прямоугольного треугольника 0 и 90, а также 30, 45 и 60 градусов. Эти показатели встречаются в девяти из десяти школьных задач. Подглядывая эти значения в учебнике, вы потеряете много времени, а на контрольной или экзамене посмотреть и вовсе будет негде.

Нужно помнить, что значение обеих функций не может превышать единицу. Если где-либо в расчетах вы получите значение, выходящее за пределы диапазона 0-1, остановитесь и решите задачу заново.

Сумма квадратов синуса и косинуса равна единице. Если вы уже нашли одно из значений, воспользуйтесь этой формулой для нахождения оставшегося.

Теоремы

В базовой тригонометрии существует две основные теоремы: синусов и косинусов.

Первая гласит, что отношение каждой стороны треугольника к синусу противолежащего угла одинаково. Вторая - что квадрат любой стороны можно получить, если сложить квадраты двух оставшихся сторон и вычесть удвоенное их произведение, умноженное на косинус лежащего между ними угла.

Таким образом, если в теорему косинусов подставить значение угла в 90 градусов, мы получим… теорему Пифагора. Теперь, если требуется высчитать площадь фигуры, не являющейся прямоугольным треугольником, можно больше не переживать - две рассмотренные теоремы существенно упростят решение задачи.

Цели и задачи

Изучение тригонометрии значительно упростится, когда вы осознаете один простой факт: все выполняемые вами действия направлены на достижения всего одной цели. Любые параметры треугольника могут быть найдены, если вы знаете о нём самый минимум информации - это может быть величина одного угла и длины двух сторон или, например, три стороны.

Для определения синуса, косинуса, тангенса любого угла этих данных достаточно, с их же помощью можно легко высчитать площадь фигуры. Практически всегда в качестве ответа требуется привести одно из упомянутых значений, а найти их можно по одним и тем же формулам.

Нестыковки при изучении тригонометрии

Одним из непонятных вопросов, которых школьники предпочитают избегать, является обнаружение связи между различными понятиями в тригонометрии. Казалось бы, для изучения синусов и косинусов углов используются треугольники, но обозначения почему-то часто встречаются на рисунке с окружностью. Кроме того, существует и вовсе непонятный волнообразный график под названием синусоида, не имеющий никакого внешнего сходства ни с окружностью, ни с треугольниками.

Более того, углы измеряются то в градусах, то в радианах, а число Пи, записывающееся просто как 3,14 (без единиц измерения), почему-то фигурирует в формулах, соответствуя 180 градусам. Как всё это связано между собой?

Единицы измерения

Почему число Пи равняется именно 3,14? Помните ли вы, что это за значение? Это количество радиусов, умещающихся в дуге на половине окружности. Если диаметр круга - 2 сантиметра, длина окружности составит 3,14*2, или 6,28.

Второй момент: возможно, вы замечали сходство слов «радиан» и «радиус». Дело в том, что один радиан численно равен величине угла, отложенного из центра окружности на дугу длиной в один радиус.

Теперь совместим полученные знания и поймем, почему сверху на оси координат в тригонометрии пишется «Пи пополам», а слева - «Пи». Это угловая величина, измеренная в радианах, ведь полукруг - это 180 градусов, или 3,14 радиана. А там, где есть градусы, есть синусы и косинусы. Треугольник же легко провести от нужной точки, отложив отрезки к центру и на ось координат.

Заглянем в будущее

Тригонометрия, изучаемая в школе, имеет дело с прямолинейной системой координат, где, как бы это странно ни звучало, прямая - это прямая.

Но есть и более сложные способы работы с пространством: сумма углов треугольника здесь будет больше 180 градусов, а прямая в нашем представлении будет выглядеть как самая настоящая дуга.

Перейдем от слов к делу! Возьмите яблоко. Сделайте ножом три надреза, чтобы при взгляде сверху получался треугольник. Выньте получившийся кусок яблока и посмотрите на «рёбра», где заканчивается кожура. Они вовсе не прямые. Фрукт в ваших руках условно можно назвать круглым, а теперь представьте, какими сложными должны быть формулы, с помощью которых можно найти площадь вырезанного куска. А ведь некоторые специалисты решают такие задачи ежедневно.

Тригонометрические функции в жизни

Обращали ли вы внимание, что самый короткий маршрут самолёта из точки А в точку Б на поверхности нашей планеты имеет ярко выраженную форму дуги? Причина проста: Земля имеет форму шара, а значит, с помощью треугольников многого не вычислишь - здесь приходится использовать более сложные формулы.

Не обойтись без синуса/косинуса острого угла в любых вопросах, связанных с космосом. Интересно, что здесь сходится целое множество факторов: тригонометрические функции требуются при расчётах движения планет по окружностям, эллипсам и различным траекториям более сложных форм; процесса запуска ракет, спутников, шаттлов, отстыковки исследовательских аппаратов; наблюдении за далёкими звёздами и изучении галактик, до которых человек в обозримом будущем добраться не сможет.

В целом поле для деятельности человека, владеющего тригонометрией, очень широко и, по-видимому, со временем будет только расширяться.

Заключение

Сегодня мы узнали или, во всяком случае, повторили, что такое синус и косинус. Это понятия, которых не нужно бояться - стоит захотеть, и вы поймете их смысл. Помните, что тригонометрия - это не цель, а лишь инструмент, который можно использовать для удовлетворения реальных человеческих потребностей: строить дома, обеспечивать безопасность движения, даже осваивать просторы вселенной.

Действительно, сама по себе наука может казаться скучной, но как только вы найдете в ней способ достижения собственных целей, самореализации, процесс обучения станет интересным, а ваша личная мотивация возрастёт.

В качестве домашнего задания попробуйте найти способы применить тригонометрические функции в той сфере деятельности, которая интересна лично вам. Пофантазируйте, включите воображение, и тогда наверняка окажется, что новые знания пригодятся вам в будущем. Да и кроме того, математика полезна для общего развития мышления.


В этой статье мы всесторонне рассмотрим . Основные тригонометрические тождества представляют собой равенства, устанавливающие связь между синусом, косинусом, тангенсом и котангенсом одного угла, и позволяют находить любую из этих тригонометрических функций через известную другую.

Сразу перечислим основные тригонометрические тождества, которые разберем в этой статье. Запишем их в таблицу, а ниже дадим вывод этих формул и приведем необходимые пояснения.

Навигация по странице.

Связь между синусом и косинусом одного угла

Иногда говорят не об основных тригонометрических тождествах, перечисленных в таблице выше, а об одном единственном основном тригонометрическом тождестве вида . Объяснение этому факту достаточно простое: равенства получаются из основного тригонометрического тождества после деления обеих его частей на и соответственно, а равенства и следуют из определений синуса, косинуса, тангенса и котангенса . Подробнее об этом поговорим в следующих пунктах.

То есть, особый интерес представляет именно равенство , которому и дали название основного тригонометрического тождества.

Прежде чем доказать основное тригонометрическое тождество, дадим его формулировку: сумма квадратов синуса и косинуса одного угла тождественно равна единице. Теперь докажем его.

Основное тригонометрическое тождество очень часто используется при преобразовании тригонометрических выражений . Оно позволяет сумму квадратов синуса и косинуса одного угла заменять единицей. Не менее часто основное тригонометрическое тождество используется и в обратном порядке: единица заменяется суммой квадратов синуса и косинуса какого-либо угла.

Тангенс и котангенс через синус и косинус

Тождества, связывающие тангенс и котангенс с синусом и косинусом одного угла вида и сразу следуют из определений синуса, косинуса, тангенса и котангенса. Действительно, по определению синус есть ордината y, косинус есть абсцисса x, тангенс есть отношение ординаты к абсциссе, то есть, , а котангенс есть отношение абсциссы к ординате, то есть, .

Благодаря такой очевидности тождеств и часто определения тангенса и котангенса дают не через отношение абсциссы и ординаты, а через отношение синуса и косинуса. Так тангенсом угла называют отношение синуса к косинусу этого угла, а котангенсом – отношение косинуса к синусу.

В заключение этого пункта следует отметить, что тождества и имеют место для всех таких углов , при которых входящие в них тригонометрические функции имеют смысл. Так формула справедлива для любых , отличных от (иначе в знаменателе будет нуль, а деление на нуль мы не определяли), а формула - для всех , отличных от , где z - любое .

Связь между тангенсом и котангенсом

Еще более очевидным тригонометрическим тождеством, чем два предыдущих, является тождество, связывающее тангенс и котангенс одного угла вида . Понятно, что оно имеет место для любых углов , отличных от , в противном случае либо тангенс, либо котангенс не определены.

Доказательство формулы очень просто. По определению и , откуда . Можно было доказательство провести и немного иначе. Так как и , то .

Итак, тангенс и котангенс одного угла, при котором они имеют смысл, есть .

 

 

Это интересно: