→ Необходимое и достаточное условие монотонности. Промежутки монотонности функции Свойства монотонности функции

Необходимое и достаточное условие монотонности. Промежутки монотонности функции Свойства монотонности функции

Числовое множество X считается симметричным относительно нуля, если для любого x ЄX значение -х также принадлежит множеству X .

Функция y = f (х X , считается четной X x ЄX , f (х ) = f (-х ).

У четной функции график симметричен относительно оси Оу.

Функция y = f (х ), которая задана на множестве X , считается нечетной , если выполняются следующие условия: а) множество X симметрично относительно нуля; б) для любого x ЄX , f (х ) = -f (-х ).

У нечетной функции график симметричен относительно начала координат.

Функция у = f (x ), x ЄX , называется периодической на X , если найдется число Т (Т ≠ 0) (период функции), что выполняются следующие условия:

  • х - Т и х + Т из множества X для любого х ЄX ;
  • для любого х ЄX , f (х + T ) = f (х - T ) = f (х).

В случае, когда Т - это период функции, то любое число вида , где m ЄZ , m ≠ 0, это также период этой функции. Наименьший из положительных периодов данной функции (если он существует) называется ее главным периодом.

В случае, когда Т - основной период функции, то для построения ее графика можно построить часть графика на любом из промежутков области определения длины Т , а затем сделать параллельный перенос этого участка графика вдоль оси Ох на ±Т , ±2T , ....

Функция y = f (х ), ограниченна снизу на множестве Х А , что для любого х ЄX , А f (х ). График функции, который ограничен снизу на множестве X , полностью располагается выше прямой у = А (это горизонтальная прямая).

Функция у = f (x ), ограниченна сверху на множестве Х (она при этом должна быть определенной на этом множестве), если есть число В , что для любого х ЄX , f (х ) ≤ В . График функции, который ограничен сверху на множестве X, полностью располагается ниже прямой у = В (это горизонтальная линия).

Функция, считается ограниченной на множестве Х (она при этом должна быть определенной на этом множестве), если она ограничена на этом множестве сверху и снизу, т. е. существуют такие числа А и В , что для любого х ЄX выполняются неравенства A f (x ) ≤ B . График функции, которая ограничена на множестве X , полностью располагается в промежутке между прямыми у = А и у = В (это горизонтальные прямые).

Функция у = f (х ), считается ограниченной на множестве Х (она при этом должна быть определенной на этом множестве), если найдется число С > 0, что для любого x ЄX , │f (х )│≤ С .

Функция у = f (х ), х ЄX , называется возрастающей (неубывающей) на подмножестве М СX , когда для каждых х 1 и х 2 из М таких, что х 1 < х 2 , справедливо f (х 1) < f (х 2) (f (х 1) ≤ f (х 2)). Или функция у называется возрастающей на множестве К , если большему значению аргумента из этого множества соответствует большее значение функции.

Функция у = f (х ), х ЄX, называется убывающей (невозрастающей) на подмножестве М СX , когда для каждых х 1 и х 2 из М таких, что х 1 < х 2 , справедливо f (х 1) > f (х 2) (f (х 1) ≥ f (х 2)). Или функция у называется убывающей на множестве К , если большему значению аргумента из этого множества соответствует меньшее значение функции.

Функция у = f (x ), х ЄX , называется монотонной на подмножестве М СX , если она является убывающей (невозрастающей) или возрастающей (неубывающей) на М .

Если функция у = f (х ), х ЄX , является убывающей или возрастающей на подмножестве М СX , то такая функция называется строго монотонной на множестве М .

Число М называют наибольшим значением функции у на множестве К , если это число является значением функции при определенном значении х 0 аргумента из множества К , а при других значениях аргумента из множества К значения функции у не больше числа М .

Число m называют наименьшим значением функции у на множестве К , если это число является значением функции при определенном значении х 0 аргумента из множества К , а при других значениях аргумента х из множества К значения функции у не меньше числа m .

Основные свойства функции , с которых лучше начинать ее изучение и исследование это область ее определения и значения. Следует запомнить, как изображаются графики элементарных функций. Только потом можно переходить к построению более сложных графиков. Тема "Функции" имеет широкие приложения в экономике и других областях знания. Функции изучают на протяжении всего курса математики и продолжают изучать в высших учебных заведениях . Там функции исследуются при помощи первой и второй производных.

Теорема о пределе монотонной функции. Приводится доказательство теоремы, используя два метода. Также даны определения строго возрастающей, неубывающей, строго убывающей и невозрастающей функций. Определение монотонной функции.

Содержание
Функция не ограничена сверху


1.1. Пусть число b конечное: .
1.1.2. Пусть функция не ограничена сверху.


.


при .

Обозначим . Тогда для любого существует , так что
при .
Это означает, что предел слева в точке b равен (см. «Определения односторонних бесконечных пределов функции в конечной точке»).

b рано плюс бесконечности
Функция ограничена сверху

1. Пусть функция не убывает на интервале .
1.2.1. Пусть функция ограничена сверху числом M : при .
Докажем, что в этом случае существует предел .

Поскольку функция ограничена сверху, то существует конечная верхняя грань
.
Согласно определению точной верхней грани, выполняются следующие условия:
;
для любого положительного существует такой аргумент , для которого
.

Поскольку функция не убывает, то при . Тогда при . Или
при .

Итак, мы нашли, что для любого существует число , так что
при .
«Определения односторонних пределов на бесконечности»).

Функция не ограничена сверху

1. Пусть функция не убывает на интервале .
1.2. Пусть число b равно плюс бесконечности: .
1.2.2. Пусть функция не ограничена сверху.
Докажем, что в этом случае существует предел .

Поскольку функция не ограничена сверху, то для любого числа M существует такой аргумент , для которого
.

Поскольку функция не убывает, то при . Тогда при .

Итак, для любого существует число , так что
при .
Это означает, что предел при равен (см. «Определения односторонних бесконечных пределов на бесконечности»).

Функция не возрастает

Теперь рассмотрим случай, когда функция не возрастает. Можно, как и выше, рассмотреть каждый вариант по отдельности. Но мы охватим их сразу. Для этого используем . Докажем, что в этом случае существует предел .

Рассмотрим конечную нижнюю грань множества значений функции:
.
Здесь B может быть как конечным числом, так и бесконечно удаленной точкой . Согласно определению точной нижней грани, выполняются следующие условия:
;
для любой окрестности точки B существует такой аргумент , для которого
.
По условию теоремы, . Поэтому .

Поскольку функция не возрастает, то при . Поскольку , то
при .
Или
при .
Далее замечаем, что неравенство определяет левую проколотую окрестность точки b .

Итак, мы нашли, что для любой окрестности точки , существует такая проколотая левая окрестность точки b , что
при .
Это означает, что предел слева в точке b равен :

(см. универсальное определение предела функции по Коши).

Предел в точке a

Теперь покажем, что существует предел в точке a и найдем его значение.

Рассмотрим функцию . По условию теоремы, функция является монотонной при . Заменим переменную x на - x (или сделаем подстановку , а затем заменим переменную t на x ). Тогда функция является монотонной при . Умножая неравенства на -1 и меняя их порядок приходим к выводу, что функция является монотонной при .

Аналогичным способом легко показать, что если не убывает, то не возрастает. Тогда согласно доказанному выше, существует предел
.
Если не возрастает, то не убывает. В этом случае существует предел
.

Теперь осталось показать, что если существует предел функции при , то существует предел функции при , и эти пределы равны:
.

Введем обозначение:
(1) .
Выразим f через g :
.
Возьмем произвольное положительное число . Пусть есть эпсилон окрестность точки A . Эпсилон окрестность определяется как для конечных, так и для бесконечных значений A (см. «Окрестность точки»). Поскольку существует предел (1), то, согласно определению предела, для любого существует такое , что
при .

Пусть a - конечное число. Выразим левую проколотую окрестность точки -a , используя неравенства:
при .
Заменим x на -x и учтем, что :
при .
Последние два неравенства определяют проколотую правую окрестность точки a . Тогда
при .

Пусть a - бесконечное число, . Повторяем рассуждения.
при ;
при ;
при ;
при .

Итак, мы нашли, что для любого существует такое , что
при .
Это означает, что
.

Теорема доказана.

См. также:

Опр.: Функция называется возрастающей на некотором промежутке, если в этом промежутке каждому большему значению аргумента соответствует большее значение функции.

Опр.: Функция называется убывающей на некотором промежутке, если в этом промежутке каждому большему значению аргумента соответствует меньшее значение функции.

Как возрастающие. так и убывающие функции называются монотонными.

Если функция не является монотонной, то область ее определения можно разбить на конечное число промежутков монотонности, которые могут чередоваться с промежутками постоянства функции.

Монотонность функции y = f(x) характеризуется знаком ее первой производной f ¤ (x), а именно, если в некотором промежутке f ¤ (x) > 0, то функция возрастает в этом промежутке, если в некотором промежутке f ¤ (x) < 0, то функция убывает в этом промежутке.

Отыскание промежутков монотонности функции y = f(x) сводится к нахождению промежутков знакопостоянства ее первой производной f ¤ (x).

Отсюда получаем правило для нахождения промежутков монотонности функции y = f(x)

1. Найти нули и точки разрыва f ¤ (x).

2. Определить методом проб знак f ¤ (x) в промежутках, на которые полученные в п.1 точки делят область определения функции f(x).

Пример:

Найти промежутки монотонности функции у = - х 2 + 10х + 7

Найдем f ¤ (x). y¢ = -2х +10

Точка, в которой y¢ = 0 одна и она делит область определения функции на следующие промежутки: (– ∞,5) И (5 ,+ ∞), в каждом из которых y¢ сохраняет постоянный знак. Подставим в эти промежутки конкретные значения функции и определим знак y¢ на указанных промежутках, тогда:

на промежутке (– ∞,5] y¢ > 0,

на промежутке функция возрастает, а на промежутке И (3 ,+ ∞), в каждом из которых y¢ сохраняет постоянный знак. Подставим в эти промежутки конкретные значения функции и определим знак y¢ на указанных промежутках, тогда.

Моното́нная фу́нкция - это функция, приращение которой не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной . Монотонная функция - это функция, меняющаяся в одном и том же направлении.

Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Пусть дана функция Тогда

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Определение экстремума

Функция y = f(x) называется возрастающей (убывающей) в некотором интервале, если при x1< x2 выполняется неравенство (f(x1) < f(x2) (f(x1) > f(x2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f "(x) > 0

(f " (x) < 0).

Точка xо называется точкой локального максимума (минимума) функции f(x), если существует окрестность точки xо, для всех точек которой верно неравенство f(x) ≤ f(xо) (f(x) ≥ f(xо)).

Точки максимума и минимума называются точками экстремума, а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума. Если точка xо является точкой экстремума функции f(x), то либо f "(xо) = 0, либо f (xо) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть xо - критическая точка. Если f " (x) при переходе через точку xо меняет знак плюс на минус, то в точке xо функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке xо экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную f " (x) в окрестности точки xо и вторую производную в самой точке xо. Если f " (xо) = 0,>0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же=0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

7. Интервалы выпуклости, вогнутости функции .Точки перегиба.

График функции y =f(x) называется выпуклым на интервале (a; b) , если он расположен ниже любой своей касательной на этом интервале.

График функции y =f(x) называется вогнутым на интервале (a; b) , если он расположен выше любой своей касательной на этом интервале.

На рисунке показана кривая, выпуклая на (a; b) и вогнутая на (b; c) .

Примеры.

Рассмотрим достаточный признак, позволяющий установить, будет ли график функции в данном интервале выпуклым или вогнутым.

Теорема . Пусть y =f(x) дифференцируема на (a; b) . Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ""(x ) < 0, то график функции на этом интервале выпуклый, если же f ""(x ) > 0 – вогнутый.

Доказательство . Предположим для определенности, что f ""(x ) < 0 и докажем, что график функции будет выпуклым.

Возьмем на графике функции y = f(x) произвольную точку M 0 с абсциссой x 0  (a ; b ) и проведем через точку M 0 касательную. Ее уравнение . Мы должны показать, что график функции на (a; b) лежит ниже этой касательной, т.е. при одном и том же значении x ордината кривой y = f(x) будет меньше ордината касательной.

Точка перегиба функции

У этого термина существуют и другие значения, см. Точка перегиба .

Точка перегиба функции внутренняя точкаобласти определения , такая чтонепрерывна в этой точке, существует конечная или определенного знака бесконечная производная в этой точке, иявляется одновременно концом интервала строгой выпуклости вверх и началом интервала строгой выпуклости вниз, или наоборот.

Неофициальное

В этом случае точка являетсяточкой перегиба графика функции, то есть график функции в точке«перегибается» черезкасательную к нему в этой точке: при касательная лежит под графиком, а при- над графиком(или наоборот)

Условия существования

Необходимое условие существования точки перегиба: если функция f(x), дважды дифференцируемая в некоторой окрестности точки , имеет вточку перегиба, то.

Достаточное условие существования точки перегиба: если функция в некоторой окрестности точкираз непрерывно дифференцируема, причемнечётно и, ипри, а, то функцияимеет вточку перегиба.

Которой не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной . Монотонная функция - это функция, меняющаяся в одном и том же направлении.

Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Определения

Пусть дана функция Тогда

. . . .

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Другая терминология

Иногда возрастающие функции называют неубыва́ющими , а убывающие функции невозраста́ющими . Строго возрастающие функции тогда зовут просто возрастающими, а строго убывающие просто убывающими.

Свойства монотонных функций

Условия монотонности функции

Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль . Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале Точнее имеет место

Аналогично, строго убывает на интервале тогда и только тогда, когда выполнены следующие два условия:

Примеры

См. также


Wikimedia Foundation . 2010 .

  • Слюна
  • Горьковская железная дорога

Смотреть что такое "Монотонная функция" в других словарях:

    Монотонная функция - — функция f(x), которая может быть либо возрастающей на некотором промежутке (то есть, чем больше любое значение аргумента на этом промежутке, тем больше значение функции), либо убывающей (в противоположном случае).… …

    МОНОТОННАЯ ФУНКЦИЯ - функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает) … Большой Энциклопедический словарь

    МОНОТОННАЯ ФУНКЦИЯ - (monotonie function) Функция, в которой по мере роста значения аргумента значение функции всегда изменяется в том же направлении. Следовательно, если у=f(x), то либо dy/dx > 0 для всех значений х, и в этом случае у является возрастающей… … Экономический словарь

    Монотонная функция - (от греч. monótonos однотонный) функция, приращения которой Δf(x) = f(x’) f(x) при Δx = x’ x > 0 не меняют знака, т. е. либо всегда неотрицательны, либо всегда неположительны. Выражаясь не совсем точно, М. ф. это функции, меняющиеся в… … Большая советская энциклопедия

    монотонная функция - функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает). * * * МОНОТОННАЯ ФУНКЦИЯ МОНОТОННАЯ ФУНКЦИЯ, функция, которая при возрастании аргумента либо всегда возрастает (или… … Энциклопедический словарь

    МОНОТОННАЯ ФУНКЦИЯ - функция одного переменного, определенная на нек ром подмножестве действительных чисел, приращение к рой при не меняет знака, т. е. либо всегда неотрицательно, либо всегда неположительно. Если строго больше (меньше) нуля, когда то М. ф. наз.… … Математическая энциклопедия

    МОНОТОННАЯ ФУНКЦИЯ - функция, к рая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает) … Естествознание. Энциклопедический словарь

    Монотонная последовательность - это последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают. Подобные последовательности часто встречаются при исследованиях и имеют ряд отличительных особенностей и дополнительных свойств.… … Википедия

    функция - Команда или группа людей, а также инструментарий или другие ресурсы, которые они используют для выполнения одного или нескольких процессов или деятельности. Например, служба поддержки пользователей. Этот термин также имеет другое значение:… … Справочник технического переводчика

    Функция - 1. Зависимая переменная величина; 2. Соответствие y=f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение… … Экономико-математический словарь

 

 

Это интересно: