→ Определение валентности атомов в соединениях. Составление химических формул по валентности. Определение валентности по формуле вещества

Определение валентности атомов в соединениях. Составление химических формул по валентности. Определение валентности по формуле вещества

Часто люди слышат слово «валентность», не до конца понимая, что это такое. Так что такое валентность? Валентность - один из терминов, которые употребляются в химическом строении. Валентность, по сути, определяет возможность атома образовывать химические связи. Количественно валентность - это число связей, в которых участвует атом.

Что такое валентность элемента

Валентность - это показатель способности атома присоединить другие атомы, образовав с ними, внутри молекулы, химические связи. Число связей атома равно числу его неспаренных электронов. Эти связи называют ковалентными.

Неспаренный электрон - это свободный электрон на внешней оболочке атома, который соединяется в пары с внешним электроном иного атома. Каждая пара таких электронов называется «электронной», а каждый из электронов - валентным. Так определение слова «валентность» - это количество электронных пар, с помощью которых один атом связан с другим атомом.

Валентность схематично можно изобразить в структурных химических формулах. Когда это не нужно, используют простые формулы, где валентность не указана.

Максимальная валентность химических элементов из одной группы периодической системы Менделеева равна порядковому номеру этой группы. Атомы одного и того же элемента могут иметь разную валентность в разных химических соединениях. Полярность ковалентных связей, которые образуются, при этом не учитывается. Вот почему валентность не имеет знака. Также валентность не может быть отрицательной величиной и равняться нулю.

Иногда понятие «валентность» приравнивают к понятию «степень окисления», но это не так, хотя иногда эти показатели действительно совпадают. Степень окисления - это формальный термин, который обозначает возможный заряд, который бы атом получил, если его электронные пары перешли бы к более электрически отрицательным атомам. Тут степень окисления может иметь какой то знак и выражена в единицах заряда. Этот термин распространен в неорганической химии, ведь в неорганических соединениях тяжело судить о валентности. И, наоборот, в органической химии используют валентность, потому что молекулярное строение имеет большая часть органических соединений.

Теперь Вы знаете, что такое валентность химических элементов!

Рассматривая формулы различных соединений, нетрудно заметить, что число атомов одного и того же элемента в молекулах различных веществ не одинаково. Например, HCl, NH 4 Cl, H 2 S, H 3 PO 4 и т.д. Число атомов водорода в этих соединениях изменяется от 1 до 4. Это характерно не только для водорода.

Как же угадать, какой индекс поставить рядом с обозначением химического элемента? Как составляются формулы вещества? Это легко сделать, когда знаешь валентность элементов, входящих в состав молекулы данного вещества.

это свойство атома данного элемента присоединять, удерживать или замещать в химических реакциях определённое количество атомов другого элемента. За единицу валентности принята валентность атома водорода. Поэтому иногда определение валентности формулируют так:валентность это свойство атома данного элемента присоединять или замещать определённое количество атомов водорода.

Если к одному атому данного элемента прикрепляется один атом водорода, то элемент одновалентен, если два двухвалентен и т.д. Водородные соединения известны не для всех элементов, но почти все элементы образуют соединения с кислородом О. Кислород считается постоянно двухвалентным.

Постоянная валентность:

I H, Na, Li, K, Rb, Cs
II O, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd
III B, Al, Ga, In

Но как поступить в том случае, если элемент не соединяется с водородом? Тогда валентность необходимого элемента определяют по валентности известного элемента. Чаще всего её находят, используя валентность кислорода, потому что в соединениях его валентность всегда равно 2.Например, не составит труда найти валентность элементов в следующих соединениях: Na 2 O (валентность Na 1, O 2), Al 2 O 3 (валентность Al 3, O 2).

Химическую формулу данного вещества можно составить, только зная валентность элементов. Например, составить формулы таких соединений, как CaO, BaO, CO, просто, потому что число атомов в молекулах одинаково, так как валентности элементов равны.

А если валентности разные? Когда мы действуем в таком случае? Необходимо запомнить следующее правило: в формуле любого химического соединения произведение валентности одного элемента на число его атомов в молекуле равно произведению валентности на число атомов другого элемента. Например, если известно, что валентность Mn в соединении равна 7, а O 2, тогда формула соединения будет выглядеть так Mn 2 O 7.

Как же мы получили формулу?

Рассмотрим алгоритм составления формул по валентности для состоящих из двух химических элементов.

Существует правило, что число валентностей у одного химического элемента равно числу валентностей у другого . Рассмотрим на примере образования молекулы, состоящей из марганца и кислорода.
Будем составлять в соответствии с алгоритмом:

1. Записываем рядом символы химических элементов:

Mn O

2. Ставим над химическими элементами цифрами их валентности (валентность химического элемента можно найти в таблице периодической системы Менделева, у марганца 7, у кислорода 2.

3. Находим наименьшее общее кратное (наименьшее число, которое делится без остатка на 7 и на 2). Это число 14. Делим его на валентности элементов 14: 7 = 2, 14: 2 = 7, 2 и 7 будут индексами, соответственно у фосфора и кислорода. Подставляем индексы.

Зная валентность одного химического элемента, следуя правилу: валентность одного элемента × число его атомов в молекуле = валентность другого элемента × число атомов этого (другого) элемента, можно определить валентность другого.

Mn 2 O 7 (7 · 2 = 2 · 7).

2х = 14,

х = 7.

Понятие о валентности было введено в химию до того, как стало известно строение атома. Сейчас установлено, что это свойство элемента связано с числом внешних электронов. Для многих элементов максимальная валентность вытекает из положения этих элементов в периодической системе.

Энциклопедичный YouTube

  • 1 / 5

    Однако точное и позже полностью подтверждённое понимание феномена валентности было предложено в 1852 году химиком Эдуардом Франклендом в работе, в которой он собрал и переосмыслил все существовавшие на тот момент теории и предположения на этот счёт . Наблюдая способность к насыщению разных металлов и сравнивая состав органических производных металлов с составом неорганических соединений, Франкленд ввёл понятие о «соединительной силе » (соединительном весе ), положив этим основание учению о валентности. Хотя Франкленд и установил некоторые частные закономерности, его идеи не получили развития.

    Решающую роль в создании теории валентности сыграл Фридрих Август Кекуле . В 1857 г. он показал, что углерод является четырёхосновным (четырёхатомным) элементом, и его простейшим соединением является метан СН 4 . Уверенный в истинности своих представлений о валентности атомов, Кекуле ввёл их в свой учебник органической химии: основность, по мнению автора - фундаментальное свойство атома, свойство такое же постоянное и неизменяемое, как и атомный вес . В 1858 г. взгляды, почти совпадающие с идеями Кекуле, высказал в статье «О новой химической теории » Арчибальд Скотт Купер .

    Уже три года спустя, в сентябре 1861 г. А. М. Бутлеров внёс в теорию валентности важнейшие дополнения. Он провёл чёткое различие между свободным атомом и атомом, вступившим в соединение с другим, когда его сродство «связывается и переходит в новую форму ». Бутлеров ввёл представление о полноте использования сил сродства и о «напряжении сродства », то есть энергетической неэквивалентности связей, которая обусловлена взаимным влиянием атомов в молекуле. В результате этого взаимного влияния атомы в зависимости от их структурного окружения приобретают различное «химическое значение ». Теория Бутлерова позволила дать объяснение многим экспериментальным фактам, касавшимся изомерии органических соединений и их реакционной способности.

    Огромным достоинством теории валентности явилась возможность наглядного изображения молекулы. В 1860-х гг. появились первые молекулярные модели . Уже в 1864 г. А. Браун предложил использовать структурные формулы в виде окружностей с помещёнными в них символами элементов, соединённых линиями, обозначающими химическую связь между атомами; количество линий соответствовало валентности атома. В 1865 г. А. фон Гофман продемонстрировал первые шаростержневые модели, в которых роль атомов играли крокетные шары. В 1866 г. в учебнике Кекуле появились рисунки стереохимических моделей , в которых атом углерода имел тетраэдрическую конфигурацию.

    Первоначально за единицу валентности была принята валентность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента. Определенная таким образом валентность называется валентностью в водородных соединениях или валентностью по водороду: так, в соединениях HCl, H 2 O, NH 3 , CH 4 валентность по водороду хлора равна единице, кислорода – двум, азота – трём, углерода – четырём.

    Валентность кислорода, как правило, равна двум. Поэтому, зная состав или формулу кислородного соединения того или иного элемента, можно определить его валентность как удвоенное число атомов кислорода, которое может присоединять один атом данного элемента. Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду: так, в соединениях K 2 O, CO, N 2 O 3 , SiO 2 , SO 3 валентность по кислороду калия равна единице, углерода – двум, азота – трём, кремния – четырём, серы – шести.

    У большинства элементов значения валентности в водородных и в кислородных соединениях различны: например, валентность серы по водороду равна двум (H 2 S), а по кислороду шести (SO 3). Кроме того, большинство элементов проявляют в разных своих соединениях различную валентность [некоторые элементы могут не иметь ни гидридов, ни оксидов]. Наприм., углерод образует с кислородом два оксида: монооксид углерода CO и диоксид углерода CO 2 . В монооксиде углерода валентность углерода равна двум, а в диоксиде – четырём (некоторые элементы способны образовывать также пероксиды). Из рассмотренных примеров следует, что охарактеризовать валентность элемента каким-нибудь одним числом и/или методом, как правило, нельзя.

    Современные представления о валентности

    С момента возникновения теории химической связи понятие «валентность» претерпело существенную эволюцию. В настоящее время оно не имеет строгого научного толкования, поэтому практически полностью вытеснено из научной лексики и используется, преимущественно, в методических целях.

    В основном, под валентностью химических элементов обычно понимается способность свободных его атомов (в более узком смысле - мера его способности) к образованию определённого числа ковалентных связей . В соединениях с ковалентными связями валентность атомов определяется числом образовавшихся двухэлектронных двухцентровых связей. Именно такой подход принят в теории локализованных валентных связей , предложенной в 1927 году В. Гайтлером и Ф. Лондоном . Очевидно, что если в атоме имеется n неспаренных электронов и m неподелённых электронных пар , то этот атом может образовывать n + m ковалентных связей с другими атомами . При оценке максимальной валентности следует исходить из электронной конфигурации гипотетического, т. н. «возбуждённого» (валентного) состояния. Например, максимальная валентность атома бора, углерода и азота равна 4 (например, в − , CH 4 и +), фосфора - 5 (PCl 5), серы - 6 (H 2 SO 4), хлора - 7 (Cl 2 O 7).
    Число связей, которые может образовывать атом, равно числу его неспаренных электронов , идущих на образование общих электронных пар (молекулярных двухэлектронных облаков). Ковалентная связь может образовываться также по донорно-акцепторному механизму . При этом в обоих случаях не учитывается полярность образовавшихся связей , а потому валентность не имеет знака - она не может быть ни положительной, ни отрицательной, в отличие от степени окисления (N 2 , NO 2 , NH 3 и +).

    Кроме валентности по водороду и по кислороду, способность атомов данного элемента соединяться друг с другом или с атомами других элементов в ряде случаев можно выразить [часто и отождествить] иными способами: как, например, степень окисления элемента (условный заряд атома в предположении, что вещество состоит из ионов), ковалентность (число химических связей, образуемых атомом данного элемента, в том числе и с одноимённым элементом; см. ниже), координационное число атома (число атомов, непосредственно окружающих данный атом) и т. п. Эти характеристики могут быть близки и даже совпадать количественно, но ни коим образом не тождественны друг другу . Например, в изоэлектронных молекулах азота N 2 , монооксида углерода CO и цианид-ионе CN − реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления элементов равна, соответственно, 0, +2, −2, +2 и −3. В молекуле этана (см. рис.) углерод четырёхвалентен, как и в большинстве органических соединений, тогда как степень окисления равна −3.

    Особенно это справедливо для молекул с делокализованными химическими связями, например в азотной кислоте степень окисления азота равна +5, тогда как азот не может иметь валентность выше 4. Известное из многих школьных учебников правило - «Максимальная валентность элемента численно равна номеру группы в Периодической таблице» - относится исключительно к степени окисления. Понятия «постоянной валентности» и «переменной валентности» также преимущественно относятся к степени окисления.

    Ковалентность элемента (мера валентных возможностей элементов; ёмкость насыщения) определяется общим числом неспаренных электронов [валентных электронных пар ] как в нормальном, так и в возбуждённом состоянии атома, или, иначе говоря, число образуемых атомом ковалентных связей (углерод 2s 2 2p 2 II-ковалентен, а в возбуждённом состоянии C* 2s 1 2p 3 - IV-ковалентный; таким образом в CO и CO 2 валентность составляет II или IV, а ковалентность - II и /или IV). Так, ковалентность азота в молекулах N 2 , NH 3 , Al≡N и цианамиде Ca=N-C≡N равна трём, ковалентность кислорода в молекулах H 2 O и CO 2 - двум, ковалентность углерода в молекулах CH 4 , CO 2 и кристалле (алмаза) - четырём.

    В классическом и/или пост-квантовохимическом представлении по электронным спектрам поглощения двухатомных молекул можно определять число оптических (валентных) электронов при данной энергии возбуждения . Согласно этому методу, обратная величина тангенса угла наклона корреляционной прямой/прямых (при релевантных значениях молекулярных электронных термов, которые образованы относительными суммами атомных) соответствует числу пар валентных электронов, то есть валентности в её классическом понимании .

    Между валентностью [стехиометрической] в данном соединении, мольной массой его атомов и его эквивалентной массой существует простое соотношение, непосредственно вытекающее из атомной теории и определения понятия «эквивалентная масса ».CO - валентность , так как большинство неорганических веществ имеет немолекулярное строение, а органических - молекулярное. Нельзя отождествлять эти два понятия, даже если они численно совпадают. Широко применяется также термин «валентные электроны », то есть наиболее слабо связанные с ядром атома, чаще всего внешние электроны.

    По валентности элементов можно составлять истинные формулы соединений, и, наоборот, исходя из истинных формул можно определять валентности элементов в данных соединениях . При этом необходимо придерживаться принципа, согласно которому произведение валентности одного элемента на число его атомов равно произведению валентности второго элемента на число его атомов . Так, чтобы составить формулу оксида азота (III), следует записать сверху над символом валентности элементов N I I I {\displaystyle {\stackrel {III}{\mbox{N}}}} O I I {\displaystyle {\stackrel {II}{\mbox{O}}}} . Определив наименьший общий знаменатель и разделив его на соответствующие валентности, получим атомное соотношение азота к кислороду, а именно 2: 3. Следовательно, формула оксида азота (III) соответствует N + 3 2 O − 2 3 {\displaystyle {\stackrel {+3}{\mbox{N}}}_{2}{\stackrel {-2}{\mbox{O}}}_{3}} . Для определения валентности поступают таким же образом наоборот.

    ОПРЕДЕЛЕНИЕ

    Под валентностью подразумевается свойство атома данного элемента присоединять или замещать определенное число атомов другого элемента.

    Мерой валентности поэтому может быть число химических связей, образуемых данным атомом с другими атомами. Таким образом, в настоящее время под валентностью химического элемента обычно понимается его способность (в более узком смысле - мера его способности) к образованию химических связей. В представлении метода валентных связей числовое значение валентности соответствует числу ковалентных связей, которые образует атом.

    Элементы с постоянной валентностью

    Существуют элементы с т.н. постоянной валентностью (металлы IA и IIA групп, алюминий водород, фтор, кислород и т.д.), которые в своих соединениях проявляют единственную степень окисления, которая чаще всего совпадает с номером группы Периодической таблицы Д.И. Менделеева, где они расположены). Рассмотрим на примере некоторых химических элементов.

    Валентность элементов главной подгруппы I группы равна единице, так ка на внешнем уровне атомы этих элементов имеют один электрон:

    3 Li 1s 2 2s 1

    11 Na 1s 2 2s 2 2p 6 3s 1

    Валентность элементов главной подгруппы II группы в основном (невозбужденном) состоянии равна нулю, так как на внешнем энергетическом уровне нет неспаренных электронов:

    4 Be1s 2 2 s 2

    12 Mg 1s 2 2s 2 2p 6 3s 2

    При возбуждении этих атомов спаренные s-электроны разъединяются в свободные ячейки p-подуровня этого же уровня и валентность становится равной двум (II):

    Кислород и фтор во всех соединениях проявляют постоянную валентность, равную двум (II) для кислорода и единице (I) для фтора. Валентные электроны этих элементов находятся на втором энергетическом уровне, где нет более свободных ячеек:

    8 O 1s 2 2s 2 2p 4

    9 F 1s 2 2s 2 2p 5

    Примеры решения задач

    ПРИМЕР 1

    Задание Число неспаренных электронов в атоме бора в основном состоянии такое же, как и в атоме: 1) рубидия; 2) кремния; 3) кислорода; 4) кальция.
    Решение Число неспаренных электронов в атоме химического элемента чаще всего равно одному из значений валентности, которые проявляет этот элемент. Чтобы определить число неспаренных электронов в атоме бора в основном состоянии запишем электронную формулу этого элемента:

    5 B 1s 2 2s 2 2p 1 .

    На внешнем электронном уровне бора находится 3 электрона из которых только один неспаренный. Один неспаренный электрон в основном состоянии также имеет рубидий, поскольку он расположен в IA группе и на его внешнем электронном уровне находится всего один электрон, который, естественно, является неспаренным.

    Ответ Вариант 1

    ПРИМЕР 2

    Задание Определите валентность элементов в следующих соединениях: а) NH 3 ; б) SO 2 ; в) CO 2 ; г) H 2 S; д) P 2 O 5 .
    Решение Определение валентностей элементов в химическом соединении стоит начинать с указания валентности известного элемента. В варианте «а» — это водород, поскольку его валентность всегда равна I:

    Проставляем полученное значение справа от химического знака этого элемента, обозначая арабскими цифрами:

    Теперь делим общее число единиц валентности на число атомов (индекс) элемента, для которого известна валентность:

    Поставим полученное частное (3) римской цифрой над искомым элементом как его валентность:

    Значит валентность элементов в соединении NH 3 равна: у азота - III и у водорода - I.

    Аналогичным образом определяем валентности элементов в других соединениях: б) S IV O II 2 ; в) C IV O II 2 ; г) H I 2 S II ; д) P V 2 O II 5 .

    Ответ а) N III H I 3 ;б) S IV O II 2 ; в) C IV O II 2 ; г) H I 2 S II ; д) P V 2 O II 5

    Значения валентности по водороду и кислороду различаются. Например, сера в соединении H2S двухвалентна, а в формуле SO3 - шестивалентна. Углерод образует с кислородом монооксид CO и диоксид CO2. В первом соединении валентность C равна II, а во втором - IV. Такое же значение в метане CH4.- Читайте подробнее на FB.ru:

    Большинство элементов проявляет не постоянную, а переменную валентность , например, фосфор, азот, сера. Поиски основных причин этого явления привели к возникновению теорий химическй связи, представлений о валентной оболочке электронов, молекулярных орбиталях. Существование разных значений одного и того же свойства получило объяснение с позиций строения атомов и молекул.

    Постоянная валентность. Эволюция понятия "валентность". Последовательность действий при определении валентности атомов элементов в соединениях, составление формулы. Из этих сведений вытекает важное правило: максимальное значение валентности элемента совпадает с номером группы, в которой он находится1. Поскольку в периодической системе восемь групп, то значения валентности элементов могут быть от I до 8.

    Согласно той теории валентности, которую выдвигал Кекуле, для углерода принималась одна постоянная валентность , тогда как поведение многих других элементов, как, впрочем, и самого углерода, очевидным образом противоречило понятию о постоянной валентности. Например, электроотрицательные элементы, такие, как хлор и сера, соединяются с кислородом в различных пропорциях элементы электроположительные, такие, как железо, дают несколько окислов. Логика требовали принять, что один и тот же элемент, смотря по обстоятельствам, может проявлять различные степени валентности. Как следствие из наблюдавшихся фактов и еще более из закона кратных отношений возникает понятие о многовалентности или переменной валентности. Все н<е, как заметил Эрлен-мейер следует полагать, что каждый элемент обладает максимальной валентностью , ему свойственной и. для него характерной, но которую он не всегда может проявить. Хотя на первый взгляд это предположение вполне приемлемо, не обошлось без серьезных возражений в самом деле, поскольку максимальная валентность есть характеристическое свойство атома, то соединения, в которых реализуется этот максимум, должны бы быть более устойчивыми. Максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома. Понятие валентности тесно связано с Периодическим законом Менделеева. Если внимательно посмотреть на таблицу Менделеева, можно заметить: положение элемента в периодической системе и его валентность нерарывно связаны.


    Валентность - II (минимальная ) Валентность – IV (высшая) Высшая (максимальная ) валентность в большинстве своем совпадает с номером группы химического элемента.

    Схема образования химической связи: перекрывание внешних атомных орбиталей взаимодействующих атомов. Порядок связи. Простые и кратные связи. Би и пи- связи – разновидности неполярных и полярных химических связей.

    Основные положения метода валентных связей. 1.Ковалентную химическую связь образуют два электрона с противоположными спинами, принадлежащие двум атомам. Например, при сближении двух атомов водорода происходит частичное перекрывание их электронных орбиталей и образуется общая пара электронов H× + × H = H: H

    Ковалентная связь может быть образована и по донорно-акцепторному механизму. Механизм образования ковалентной связи за счёт электронной пары одного атома (донора) и другого атома (акцептора), предоставляющего для этой пары свободную орбиталь, называется донорно-акцепторным.

    В качестве примера возьмём механизм образования иона аммония NH4+. В молекуле NH3 три поделённые электронные пары образуют три связи N- H, четвёртая пара внешних электронов является не поделённой, она может дать связь с ионом водорода, в результате получается ион аммония NH4+ . Ион NH4+ имеет четыре ковалентных связи, причем все четыре связи N-H равноценны, то есть электронная плотность равномерно распределена между ними.

    2. При образовании ковалентной химической связи происходит перекрывание волновых функций электронов (электронных орбиталей), при этом связь будет тем прочнее, чем больше это перекрывание.

    3. Ковалентная химическая связь располагается в том направлении, в котором возможность перекрывания волновых функций электронов, образующих связь будет наибольшей.

    4. Валентность атома в нормальном (невозбужденном) состоянии определяется:

    Числом неспаренных электронов, участвующих в образовании общих электронных пар с электронами других атомов;

    Наличием донорной способности (за счёт одной неподелённой электронной пары).

    В возбужденном состоянии валентность атома определяется:

    Числом неспаренных электронов;

    Числом вакантных орбиталей, способных акцептировать электронные пары доноров.

    Таким образом, валентность выражается небольшими целыми числами и не имеет знака. Мерой валентности является число химических связей, которыми данный атом соединён с другими.

    К валентным относятся прежде всего электроны внешних уровней, но для элементов побочных подгрупп к ним относятся и электроны предпоследних (предвнешних) уровней.

     

     

Это интересно: